,以牺牲召回为代价来提高精度.结果,系统在关闭循环和重用以前的地图方面太慢.我们提出了一种新的位置识别算法,首先检查候选关键帧的几何一致性,然后检查与三个可共视关键帧的局部一致性,这三个关键帧在大多数情况下已经在地图中...初始化要求:1、先解决视觉问题有利于IMU初始化;2、尺度显示表示为优化变量将加快收敛速度;3、不能忽略IMU传感器的不确定性。...首秀是地图点融合:融合窗口由匹配的关键帧组合而成,检测到重复的点进行融合,在共视性和本质图中创建新的关联....为了总结性能,我们给出了每个传感器配置的10次执行的中间值.对于一个稳健的系统,中位数准确地代表了系统的行为.但是一个不稳定的系统会在结果中表现出很大的差异.这可以使用图4进行分析,图4用颜色显示了10...最后,房间序列可以代表典型的AR/VR,表三显示ORB-SLAM3比竞争方法更准确.表四比较了使用我们的四种传感器配置获得的结果.利用单目惯性,我们进一步将平均RMSE加速度误差降低到2厘米以下,也获得了真实的尺度