学习
实践
活动
专区
工具
TVP
写文章
  • 广告
    关闭

    2023新春采购节

    领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于协同过滤的推荐引擎(实战部分)

    那么首先要做的处理就是添加一列预测列,这一列里我们将rating列复制出一列,叫predict_rating,部分rating置零,当作要预测的评分,我们的程序就计算为零的rating,然后对比predict_ratingrating的差距。 这是又一个拦路虎,自认为比较理想的是每个都有1/3的predict_rating是0,用来做预测,想到下面个plan: 1、excel复制rating,粘贴,重命名为predict_rating,看数据发现相同 import time real_rating = full_data['rating'] # 原rating predict_rating = np.array(full_data['rating'] ,如果有就同时把这两个rating分别加入预测列的rating和对照列的rating中,没有就两个都不加入,这样就实现了和“取出电影-用户矩阵中都不为零的两列”同样的效果。

    47370

    扫码关注腾讯云开发者

    领取腾讯云代金券