由图解法可知上述问题的最优解释 x1,x2 = (2, 6)
在python中,我们可以通过调用scipy库中的optimize模块来求解线性规划问题。...上述问题的求解代码如下:
import numpy as np
from scipy import optimize
#定义目标函数
Z = np.mat([-4,-3])
#定义约束条件
A = np.mat...res = optimize.linprog(Z, A_ub = A, b_ub= B,bounds=(x1_bound, x2_bound))
print(res)
print("最优解:",res.x...res = optimize.linprog(Z, A_ub= A, b_ub= B,A_eq= A_eq, b_eq= b_eq, bounds=(x1_bound, x2_bound,x3_bound...res = optimize.linprog(Z, A_ub= A, b_ub= B, bounds=((0, None), (0, None),(0, None),(0, None)))
x1 = res.x