首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python可视化 | Seaborn教你一行代码生成数据可视化

_subplots.AxesSubplot at 0x7fd493fa0390> 直方图 直方图将数据分成bin(s),然后绘制条形以显示落在每个bin中的数据数量,来表示数据的分布。...像直方图一样,KDE根据一个轴上数据的密度,在另一个轴上显示高度。 sns.distplot(x, hist=False, rug=True) matplotlib.axes...._subplots.AxesSubplot at 0x7fd493864eb8> KDE的带宽(bw)参数控制估算值与数据拟合的紧密程度,非常类似于直方图中的bin大小。..._subplots.AxesSubplot at 0x7fd3f08cb2e8> 双变量分布可视化 在seaborn中可视化双变量的方法是jointplot()函数,该函数创建一个多面板图形,该图形同时显示两个变量之间的双变量...sns.jointplot(x="x", y="y", data=df) seaborn.axisgrid.JointGrid at 0x7fd3f08a0a20> 六边形图 双变量的直方图叫“

1.3K30

详解seaborn可视化中的kdeplot、rugplot、distplot与jointplot

Python大数据分析 一、seaborn简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到...二、kdeplot seaborn中的kdeplot可用于对单变量和双变量进行核密度估计并可视化,其主要参数如下: data:一维数组,单变量时作为唯一的变量 data2:格式同data2,单变量时不输入...,双变量作为第2个输入变量 shade:bool型变量,用于控制是否对核密度估计曲线下的面积进行色彩填充,True代表填充 vertical:bool型变量,在单变量输入时有效,用于控制是否颠倒x-y轴位置...fit部分拟合出的曲线之外的所有对象的色彩 vertical:bool型,控制是否颠倒x-y轴,默认为False,即不颠倒 norm_hist:bool型变量,用于控制直方图高度代表的意义,为True直方图高度表示对应的密度...kind为'kde'来将直方图和散点图转换为核密度估计图,并将边际轴的留白大小设定为0: ax = sns.jointplot(x='sepal_length',y='sepal_width',data

5K32
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (数据科学学习手札62)详解seaborn中的kdeplot、rugplot、distplot与jointplot

    一、简介   seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到seaborn中内置的若干函数对数据的分布进行多种多样的可视化...二、kdeplot   seaborn中的kdeplot可用于对单变量和双变量进行核密度估计并可视化,其主要参数如下:   data:一维数组,单变量时作为唯一的变量   data2:格式同data2,...三、distplot   seaborn中的distplot主要功能是绘制单变量的直方图,且还可以在直方图的基础上施加kdeplot和rugplot的部分内容,是一个功能非常强大且实用的函数,其主要参数如下...:bool型,控制是否颠倒x-y轴,默认为False,即不颠倒   norm_hist:bool型变量,用于控制直方图高度代表的意义,为True直方图高度表示对应的密度,为False时代表的是对应的直方区间内记录值个数...修改kind为'kde'来将直方图和散点图转换为核密度估计图,并将边际轴的留白大小设定为0: ax = sns.jointplot(x='sepal_length',y='sepal_width',data

    3.2K50

    Python Seaborn (3) 分布数据集的可视化

    默认情况下,这将绘制一个直方图,并拟合出核密度估计(KDE)。 ? 直方图 直方图应当是非常熟悉的函数了,在matplotlib中就存在hist函数。...如同直方图一样,KDE图会对一个轴上的另一轴的高度的观测密度进行描述: ? 绘制KDE比绘制直方图更有计算性。所发生的是,每一个观察都被一个以这个值为中心的正态( 高斯)曲线所取代。 ?...KDE的带宽bandwidth(bw)参数控制估计对数据的拟合程度,与直方图中的bin(数据切分数量参数)大小非常相似。 它对应于我们上面绘制的内核的宽度。...在seaborn中这样做的最简单的方法就是在jointplot()函数中创建一个多面板数字,显示两个变量之间的双变量(或联合)关系以及每个变量的单变量(或边际)分布和轴。 ?...这样可以将这种绘图绘制到一个特定的(可能已经存在的)matplotlib轴上,而jointplot()函数只能管理自己: ?

    2.2K10

    数据可视化(15)-Seaborn系列 | 双变量关系图jointplot()

    双变量关系图 在默认情况下双变量关系图是散点图与直方图组合的联合直方图,可以通过设置kind来改变联合直方图。...color : matplotlib color height : 数字 作用:指定图的大小(图是正方形的) ratio:数字 作用:指定主轴(x,y轴)与边缘轴(正方形四边除x,y轴外的其它轴...)高度的比率 space:数字 作用:指定主轴与边缘轴之间的空间 dropna : bool 作用:如果为True,则删除x和y中缺少的观测值 案例教程 import numpy as np import...] import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt #设置风格样式...),指定了num则表示生成的随机数是可预测的 np.random.seed(0) # 构建数据 tips = sns.load_dataset("tips") """ 案例7: 通过指定height来设置图的大小

    5.6K00

    用Python演绎5种常见可视化视图

    同样,按照变量的个数,我们可以把可视化视图划分为单变量分析和多变量分析。 单变量分析指的是一次只关注一个变量。比如我们只关注“身高”这个变量,来看身高的取值分布,而暂时忽略其他变量。...Matplotlib默认情况下呈现出来的是个长方形。而Seaborn呈现的是个正方形,而且不仅显示出了散点图,还给了这两个变量的分布情况。 Matplotlib绘制: ? Seaborn绘制: ?...在Matplotlib中,我们可以直接使用plt.plot()函数,当然需要提前把数据按照X轴的大小进行排序,要不画出来的折线图就无法按照X轴递增的顺序展示。...你可以看出这两个图示的结果是完全一样的,只是在seaborn中标记了x和y轴的含义。 ? ?...通过这些数据,需要你来预测鸢尾花卉属于三个品种中的哪一种。 ? 这里我们用seaborn中的pairplot函数来对数据集中的多个双变量的关系进行探索,如下图所示。

    1.9K10

    Python数据可视化的10种技能

    同样,按照变量的个数,我们可以把可视化视图划分为单变量分析和多变量分析。 单变量分析指的是一次只关注一个变量。比如我们只关注“身高”这个变量,来看身高的取值分布,而暂时忽略其他变量。...而 Seaborn 呈现的是个正方形,而且不仅显示出了散点图,还给了这两个变量的分布情况。 Matplotlib 绘制: ? Seaborn 绘制: ?...在 Matplotlib 中,我们可以直接使用 plt.plot() 函数,当然需要提前把数据按照 x 轴的大小进行排序,要不画出来的折线图就无法按照 x 轴递增的顺序展示。...中的 pairplot 函数来对数据集中的多个双变量的关系进行探索,如下图所示。...在 Matplotlib 和 Seaborn 的函数中,我只列了最基础的使用,也方便你快速上手。当然如果你也可以设置修改颜色、宽度等视图属性。你可以自己查看相关的函数帮助文档。这些留给你来进行探索。

    2.8K20

    Python Seaborn综合指南,成为数据可视化专家

    然后我们将使用seaborn在Python中为数据生成各种不同的可视化。 目录 什么是Seaborn? 为什么应该使用Seaborn而不是matplotlib?...为什么应该使用Seaborn而不是matplotlib? 我一直在谈论Seaborn是多么的棒,所以你可能想知道我为什么这么大惊小怪。...——迈克尔·瓦斯科姆(Seaborn的创始人) 在matplotlib中有几个(很大的)限制是Seaborn已经修复的: Seaborn提供了大量的高级接口和自定义主题,而matplotlib没有这些接口...使用Seaborn的直方图 另一种用于单变量分布的图是直方图。 直方图以箱子的形式表示数据的分布,并使用条形图来显示每个箱子下的观察次数。...有多种方式可视化双变量分布。让我们再看几个。 使用Seaborn的Hexplot Hexplot是一个双变量的直方图,因为它显示了在六边形区域内的观察次数。这是一个非常容易处理大数据集的图。

    2.8K20

    小白也能看懂的seaborn入门示例

    Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,应该把Seaborn视为matplotlib的补充...() 条形图 countplot() 计数图 Distribution plot 分布图 jointplot() 双变量关系图 pairplot() 变量关系组图 distplot() 直方图,质量估计图...distplot(单变量分布直方图) 在seaborn中想要对单变量分布进行快速了解最方便的就是使用distplot()函数,默认情况下它将绘制一个直方图,并且可以同时画出核密度估计(KDE)。...在seaborn中,最简单的实现方式是使用jointplot()函数,它会生成多个面板,不仅展示了两个变量之间的关系,也在两个坐标轴上分别展示了每个变量的分布。...HexBin图 直方图的双变量类似物被称为“hexbin”图,因为它显示了落在六边形仓内的观测数。该图适用于较大的数据集。

    4.7K20

    五分钟入门数据可视化

    ,比如饼图; 分布:关注单个变量,或者多个变量的分布情况,比如直方图。...单变量可视化视图: 一次值关注一个变量。如我们一次只关注身高变量,来看身高的取值分布,而暂时忽略其他变量。...在 Matplotlib 中,我们可以直接使用 plt.plot() 函数,当然需要提前把数据按照 x 轴的大小进行排序,要不画出来的折线图就无法按照 x 轴递增的顺序展示。...seaborn 如果要修改X和Y轴的参数需要这样写代码 df中的参数名字和lineplot中的参数的一一对应的,同时lineplot中的year就是x轴的名字,money就是y轴的名字 df = pd.DataFrame...Matplotlib seaborn: ? seaborn 饼图 饼图是常用的统计学模块,可以显示每个部分大小与总和之间的比例。在 Python 数据可视化中,它用的不算多。

    2.7K30

    Seaborn从零开始学习教程(三)

    这会让我们对数据特征有个很好的初始认识,同时也会影响后续数据分析以及特征工程的方法。本篇将会介绍如何使用 seaborn 的一些工具来检测单变量和双变量分布情况。 首先还是先导入需要的模块和数据集。...绘制单变量分布 在 seaborn 中,快速观察单变量分布的最方便的方法就是使用 distplot() 函数。默认会使用直方图 (histogram) 来绘制,并提供一个适配的核密度估计(KDE)。...绘制双变量分布 对于双变量分布的可视化也是非常有用的。...在 seaborn 中最简单的方法就是使用 joinplot() 函数,它能够创建一个多面板图形来展示两个变量之间的联合关系,以及每个轴上单变量的分布情况。...这可以将这种绘图绘制到一个特定的(可能已经存在的)matplotlib 轴上,而 jointplot() 函数只能管理自己: f, ax = plt.subplots(figsize=(6, 6))

    2K10

    Seaborn:一行代码生成酷炫狂拽的数据集可视化

    别人酷炫狂拽,坐标轴上还有直方图的可视化究竟是怎么弄的? 今天碰到了Seaborn的库,一行代码就出图,爱了! Seaborn介绍 Seaborn是Python的数据统计图形库。...Seaborn功能简介 面向数据集的API,便于观察多个变量之间的关系 支持分类变量可视化或汇总统计信息 可视化单变量或双变量分布,以及在数据子集之间进行比较 不同因变量的线性回归和展示...# 生成数据 x = np.random.normal(size=100) # 数据可视化 sns.distplot(x) 双变量分布可视化 在seaborn中可视化双变量的方法是jointplot...()函数,该函数创建一个多面板图形,该图形同时显示两个变量之间的双变量(或联合)关系以及每个变量的单变量分布。...这将创建轴矩阵,并显示DataFrame中每列的关系。默认情况下,它还会在对角轴上绘制每个变量的单变量分布。

    48110

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    直方图是一种条形图,其中表示数据变量的轴被划分为一组离散的bins,并且每个bin内的观测值的计数使用相应的bar的高度表示: sns.displot(penguins, x="flipper_length_mm...To choose the size directly, set the binwidth parameter: 容器的大小是一个重要的参数,使用错误的容器大小可能会通过模糊数据的重要特征或通过随机可变性创建明显的特征而产生误导...离散箱是自动为分类变量设置的,但它可能也有助于“缩小”条,以强调轴的分类性质: sns.displot(tips, x="day", shrink=.8) 案例3-直方图histplot-Conditioning...与直方图或KDE不同,它直接表示每个数据点。这意味着不需要考虑bin大小或平滑参数。...案例3-双变量分布直方图与核密度图-bin大小和颜色 To aid interpretation of the heatmap, add a colorbar to show the mapping

    31130

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    直方图是一种条形图,其中表示数据变量的轴被划分为一组离散的bins,并且每个bin内的观测值的计数使用相应的bar的高度表示: sns.displot(penguins, x="flipper_length_mm...To choose the size directly, set the binwidth parameter: 容器的大小是一个重要的参数,使用错误的容器大小可能会通过模糊数据的重要特征或通过随机可变性创建明显的特征而产生误导...离散箱是自动为分类变量设置的,但它可能也有助于“缩小”条,以强调轴的分类性质: sns.displot(tips, x="day", shrink=.8) 案例3-直方图histplot-Conditioning...与直方图或KDE不同,它直接表示每个数据点。这意味着不需要考虑bin大小或平滑参数。...案例3-双变量分布直方图与核密度图-bin大小和颜色 To aid interpretation of the heatmap, add a colorbar to show the mapping

    32920

    数据可视化Seaborn入门介绍

    应该把Seaborn视为matplotlib的补充,而不是替代物。同时它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。...seaborn 5种内置风格与matplotlib绘图风格对比 相比matplotlib绘图风格,seaborn绘制的直方图会自动增加空白间隔,图像更为清爽。...仍以鸢尾花为例,绘制双变量核密度估计图,并添加阴影得到如下图表: rugplot 这是一个不太常用的图表类型,其绘图方式比较朴素:即原原本本的将变量出现的位置绘制在相应坐标轴上,同时忽略出现次数的影响...它将变量的任意两两组合分布绘制成一个子图,对角线用直方图、而其余子图用相应变量分别作为x、y轴绘制散点图。显然,绘制结果中的上三角和下三角部分的子图是镜像的。...关系型图表 seaborn还提供了几个用于表达双变量关系的图表,主要包括点图和线图两类。

    2.8K20

    Python 数据可视化,常用看这一篇就够了

    ,比如饼图; 分布:关注单个变量,或者多个变量的分布情况,比如直方图。...在 Matplotlib 中,我们可以直接使用 plt.plot() 函数,当然需要提前把数据按照 x 轴的大小进行排序,要不画出来的折线图就无法按照 x 轴递增的顺序展示。...在 Matplotlib 中,我们使用 plt.bar(x, height) 函数,其中参数 x 代表 x 轴的位置序列,height 是 y 轴的数值序列,也就是柱子的高度。...热力图是一种非常直观的多元变量分析方法,通过颜色就能直观地知道某个位置上数值的大小。 另外你也可以将这个位置上的颜色,与数据集中的其他位置颜色进行比较。...在 Matplotlib 和 Seaborn 的函数中,我只列了最基础的使用,也方便你快速上手。当然如果你也可以设置修改颜色、宽度等视图属性。你可以自己查看相关的函数帮助文档。这些留给你来进行探索。

    2K10

    50 个数据可视化图表

    本文总结了在数据分析和可视化中最有用的 50 个 Matplotlib 图表。这些图表列表允许您使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。...有效图表的重要特征: 在不歪曲事实的情况下传达正确和必要的信息。 设计简单,您不必太费力就能理解它。 从审美角度支持信息而不是掩盖信息。 信息没有超负荷。...使用 seaborn 的 stripplot() 很方便实现这个功能。 5. 计数图(Counts Plot) 避免点重叠问题的另一个选择是增加点的大小,这取决于该点中有多少点。...因此,点的大小越大,其周围的点的集中度越高。 6. 边缘直方图(Marginal Histogram) 边缘直方图具有沿 X 和 Y 轴变量的直方图。...箱形图(Box Plot) 箱形图是一种可视化分布的好方法,记住中位数、第 25 个第 45 个四分位数和异常值。但是,您需要注意解释可能会扭曲该组中包含的点数的框的大小。

    4K20

    精品教学案例 | 利用Matplotlib和Seaborn对苹果股票价格进行可视化分析

    Matplotlib是一个Python库,用于2D绘图,而Seaborn是Python基于Matplotlib的数据可视化的库。...除此之外,Matplotlib还提供了丰富的线形及其颜色,还可以调节线的宽度(linewidth),数据点的大小(markersize)及设置坐标轴的名字等。...我们看到柱状图与直方图的形状很相似,但是实际上的含义及用处并不一样,直方图主要表示频率分布,其x轴为定量数据,而柱状图展示的是大小的比较,其x轴变量是分类数据。...Volume in 2015", fontsize=12) 4.4 联合绘图 Seaborn可以可视化两个变量的双变量分布,joinplot()函数可以显示两个变量之间的双变量关系以及每个变量的单变量分布...4.5 点对图 pairplot()可以完成点对图的绘制,多用于展示变量之间的相关性;对角线上的直方图允许我们看到单个变量的分布,而上下三角形上的散点图显示了两个变量之间的关系。

    2.9K30
    领券