直方图:现在用seaborn.distplot()来制作直方图,观察之间的差异 # 对上表的prglngth列做一个直方图 import matplotlib.pyplot as plt import...可以看到与使用matplotlib作的直方图最大的区别在于有一条密度曲线(KDE),可以通过设置参数去掉这条默认的曲线。...('Birth number', 'Frequency') # 设置X轴和Y轴的坐标含义 sns.plt.show() ?...箱型图 # 以birthord作为x轴,agepreg作为y轴,做一个箱型图 sns.boxplot(x='birthord', y='agepreg', data=births) sns.plt.show...var2)以直方图展示,不同的变量则以散点图展示(var1 vs var2 和var2 vs var1) 要注意的是数据中不能有NaN(缺失的数据),否则会报错 sns.pairplot(births
轴级函数是histplot()、kdeploy()、ecdfplot()和rugplot()。它们在图形级的displot()、jointplot()和pairplot()函数中组合在一起。...有几种不同的方法来可视化发行版,每种方法都有其相对的优点和缺点。了解这些因素是很重要的,这样你就可以为你的特定目标选择最好的方法。...直方图是一种条形图,其中表示数据变量的轴被划分为一组离散的bins,并且每个bin内的观测值的计数使用相应的bar的高度表示: sns.displot(penguins, x="flipper_length_mm...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...由于密度不能直接解释,等高线是按照密度的等比例绘制的,这意味着每条曲线都显示了一个水平集,使得密度的某个比例p位于它以下。
之前我们的做法是,在x轴上定义了分箱边界,y轴是相对应的频数,不难发现我们都是手动定义了分箱的数目。...现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下...总结:通过seaborn实现直方图,可使用seaborn.distplot(),seaborn也有单独的kde绘图seaborn.kde()。...总结:其它实现直方图的方法,可使用.value_counts()和pandas.cut()。 该使用哪个方法? 至此,我们了解了很多种方法来实现一个直方图。但是它们各自有什么有缺点呢?...该如何对它们进行选择呢?当然,一个方法解决所有问题是不存在的,我们也需要根据实际情况而考虑如何选择,下面是对一些情况下使用方法的一个推荐,仅供参考。
比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出来这两个变量之间是否存在某种联系。...你可以看出这两个图示的结果是完全一样的,只是在seaborn中标记了x和y轴的含义。 ? ?...在Matplotlib中,我们使用plt.hist(x, bins=10)函数,其中参数x是一维数组,bins代表直方图中的箱子数量,默认是10。...其中参数x是一维数组,bins代表直方图中的箱子数量,kde代表显示核密度估计,默认是True,我们也可以把kde设置为False,不进行显示。核密度估计是通过核函数帮我们来估计概率密度的方法。...我们创建一个随机的一维数组,然后分别用Matplotlib和Seaborn进行直方图的显示,结果如下,你可以看出,没有任何差别,其中最后一张图就是kde默认为Ture时的显示情况。 ? ? ?
在这里,我们看到不同物种的花瓣长度和萼片长度之间有很强的关系。 03. 直方图 直方图通常用于可视化单个变量的分布,不过也可用于比较两个或更多变量的分布。...除了直方图之外,KDE参数还可以用来显示核密度估计(KDE)。 这里使用鸢尾花数据集的萼片长度来制作直方图。...折线图 折线图是一种通用的图表,可以用来可视化各种不同的关系。 该图表易于创建和分析,并且可以用于有效地交流数据。 在折线图中,每个数据点都是由直线连接。...上图可以清晰的看出花瓣长度与物种之间的关系。 还可以修改密度图的显示方式,和等高线有点像。...在上图中,每个数据点表示为一个点,并且这些点的排列使得它们在分类轴上不会相互重叠。 在这里,所有萼片宽度数据点以不同的方式代表每个物种的一个点。 12.
#添加x轴和y轴标签 plt.xlabel("年龄") plt.ylabel("核密度值") #添加标题 plt.title("患者年龄分布") #显示图例 plt.legend() #显示图形...# pandas.cut() 也同样是一个方便的方法,用来将数据进行强制的分箱 # 将一系列数值分成若干份 #cut()方法,参数bin指明切分区间,左开右闭区间。...('分组',labelpad=10) plt.ylabel('病例数') plt.savefig(r"bar.jpg") # 条形图 # 将柱形图x轴和y轴调换,barh方法 # plt.barh(y...8)、kde_kws:以字典形式传递核密度图的其他修饰属性,如线的颜色、线的类型等。 9)、rug_kws:以字典形式传递须图的其他修饰属性,如线的颜色、线的宽度等。...10)、fit_kws:以字典形式传递须图的其他修饰属性,如线的颜色、线的宽度等。 11)、color:指定图颜色,除了随机分布曲线的颜色。
轴级函数是histplot()、kdeploy()、ecdfplot()和rugplot()。它们在图形级的displot()、jointplot()和pairplot()函数中组合在一起。...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...这些函数绘制类似的图形,但regplot()是一个轴级函数,而lmplot()是一个图形级函数。此外,regplot()接受各种格式的x和y变量,包括简单的numpy数组和pandas。...它拟合并移除一个简单的线性回归,然后绘制每个观测值的残差值。...前两个与得到的轴数组有明显的对应关系;可以将色调变量看作是沿着深度轴的第三维度,其中不同的层次用不同的颜色绘制。
1.分布曲线 我们可以将Seaborn的分布图与Matplotlib的直方图进行比较。它们都提供非常相似的功能。这里我们画的不是直方图中的频率图,而是y轴上的近似概率密度。...在这里,曲线(KDE)显示在分布图上的是近似的概率密度曲线。 与matplotlib中的直方图类似,在分布方面,我们也可以改变类别的数量,使图更容易理解。...特定类别数的分布图 在上图中,没有概率密度曲线。要移除曲线,我们只需在代码中写入' kde = False '。 我们还可以向分布图提供与matplotlib类似的容器的标题和颜色。...使用Seaborn的配对图 对于非对角视图,图像是两个数值变量之间的散点图 对于对角线视图,它绘制一个柱状图,因为两个轴(x,y)是相同的。 5.热力图 热图以二维形式表示数据。...Seaborn还支持其他类型的图形,如折线图、柱状图、堆叠柱状图等。但是,它们提供的内容与通过matplotlib创建的内容没有任何不同。
比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出来这两个变量之间是否存在某种联系。...你可以看出这两个图示的结果是完全一样的,只是在 seaborn 中标记了 x 和 y 轴的含义。 ?...直方图 直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是 y 值),这样就完成了对数据集的直方图分布的可视化...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...蜘蛛图 蜘蛛图是一种显示一对多关系的方法。在蜘蛛图中,一个变量相对于另一个变量的显著性是清晰可见的。 假设我们想要给王者荣耀的玩家做一个战力图,指标一共包括推进、KDA、生存、团战、发育和输出。
它将变量的任意两两组合分布绘制成一个子图,对角线用直方图、而其余子图用相应变量分别作为x、y轴绘制散点图。显然,绘制结果中的上三角和下三角部分的子图是镜像的。...例如,如下案例调用了PairGrid类实现,与标准pairplot不同的是上三角子图选用了kde图表,效果更为丰富。...对象,后面的x、y和hue均为源于data中的某一列值 x,绘图的x轴变量 y,绘图的y轴变量 hue,区分维度,一般为分类型变量 同时,relplot可通过kind参数选择绘制图表是...中的折线图,会将同一x轴下的多个y轴的统计量(默认为均值)作为折线图中的点的位置,并辅以阴影表达其置信区间。...绘图接口有stripplot和swarmplot两种,常用参数是一致的,主要包括: x,散点图的x轴数据,一般为分类型数据 y,散点图的y轴数据,一般为数值型数据 hue,区分维度,相当于增加了第三个参数
多变量可视化视图: 可以让一张图同时查看两个以上的变量,比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出这两个变量之前是否存在某种联系...seaborn 如果要修改X和Y轴的参数需要这样写代码 df中的参数名字和lineplot中的参数的一一对应的,同时lineplot中的year就是x轴的名字,money就是y轴的名字 df = pd.DataFrame...seaborn 直方图: 直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是 y 值),这样就完成了对数据集的直方图分布的可视化...在 Matplotlib 中,我们使用 plt.hist(x, bins=10) 函数,其中参数 x 是一维数组,bins 代表直方图中的箱子数量,默认是 10。...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。
ax3 = fig.add_subplot(2, 2, 3) 如果这时执行一条绘图命令(如plt.plot([1.5, 3.5, -2, 1.6])),matplotlib就会在最后一个用过的subplot...图9-8 用于演示xticks的简单线型图(带有标签) 要改变x轴刻度,最简单的办法是使用set_xticks和set_xticklabels。...图9-11 2008-2009年金融危机期间的重要日期 这张图中有几个重要的点要强调:ax.annotate方法可以在指定的x和y坐标轴绘制标签。...DataFrame的plot方法会在一个subplot中为各列绘制一条线,并自动创建图例(如图9-14所示): In [62]: df = pd.DataFrame(np.random.randn(10...你可以用seaborn.set在不同的图形外观之间切换: In [90]: sns.set(style="whitegrid") 直方图和密度图 直方图(histogram)是一种可以对值频率进行离散化显示的柱状图
图中值得注意的是,当使用单色绘制轮廓图时,虚线代表的是负数的数值,而实线代表的是正数。而轮廓线可以通过指定cmap参数来设置线条的色图。...下面我们就一个简单的例子来说明如何使用 KDE 和绘制相应的二维直方图: from scipy.stats import gaussian_kde # 产生和处理数据,初始化KDE data = np.vstack...因此它们无论是在彩色图中还是在灰度图中都有着同样的亮度变化: view_colormap('viridis') ?...每个axes对象都有着属性xaxis和yaxis,表示 x 和 y 轴,其中包含着所有的属性用来指代轴的线、刻度和标签。 主要的和次要的刻度 在每个坐标轴上,都有主要的刻度和次要的刻度概念。...注意上图中我们去除了 x 轴的标签(但是保留了刻度或网格线),y 轴的刻度和标签都被去除了。图表中没有刻度和标签在很多情况下很有用,例如,当你希望展示一个图像的网格。
直方图通常用于可视化单个变量的分布,但它们也可用于比较两个或更多变量的分布。...它们易于创建和分析,在线形图中每个数据点由直线连接。...在该图中,每个数据点表示为一个点,并且这些点的排列使得它们在分类轴上不会相互重叠。...它创建了一个坐标轴网格,这样所有数值数据点将在彼此之间创建一个图,在x轴上具有单列,y轴上具有单行。对角线图是单变量分布图,它绘制了每列数据的边际分布。...网格中的每个图都可以定制为不同类型的图,例如散点图、直方图或箱形图。
其中,统计直方图最为简单和常见,又称质量分布图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般横轴表示数据类型,纵轴表示数据情况。...1 统计直方图 统计直方图类似柱状图,但是与柱状图相比有不同含义。...就是传入的数组需要划分为几部分。 range:x轴的范围。 density:是否设置y轴为密度(默认为每一组中的数据个数)。 log:是否设置y轴为对数格式,默认为False。...虽然在以上统计直方图中绘制了密度图,这里介绍另外一种绘制方法——利用seaborn库的distplot函数。...注:在displot函数中,默认绘制密度线,即kde = True;默认绘制直方图,即hist = True。
值),这样就完成了对数据集的直方图分布的可视化。...在 Matplotlib 中,我们使用 plt.hist(x, bins=10) 函数,其中参数 x 是一维数组,bins 代表直方图中的箱子数量,默认是 10。...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...plt.hist(s) plt.show() # 用Seaborn画直方图 sns.distplot(s, kde=False) plt.show() # kde=True 会显示一条取值的曲线 sns.distplot...在蜘蛛图中,一个变量相对于另一个变量的显著性是清晰可见的。这里需要使用 Matplotlib 来进行画图,首先设置两个数组:labels 和 stats。他们分别保存了这些属性的名称和属性值。
='-.') # 长短点虚线 plt.plot(x, x + 7, linestyle=':'); # 点线 如果你喜欢更简洁的代码,这些linestyle和color参数能够合并成一个非关键字参数...下面我们就一个简单的例子来说明如何使用 KDE 和绘制相应的二维直方图: from scipy.stats import gaussian_kde # 产生和处理数据,初始化KDE data = np.vstack...因此它们无论是在彩色图中还是在灰度图中都有着同样的亮度变化: view_colormap('viridis') 如果你更喜欢彩虹方案,另一个好的选择是使用cubehelix色图: view_colormap...下面我们来创建一个 网格的子图表,其中每一行的子图表共享它们的 y 轴,而每一列的子图表共享它们的 x 轴: fig, ax = plt.subplots(2, 3, sharex='col',...每个axes对象都有着属性xaxis和yaxis,表示 x 和 y 轴,其中包含着所有的属性用来指代轴的线、刻度和标签。 主要的和次要的刻度 在每个坐标轴上,都有主要的刻度和次要的刻度概念。
5.直方图,分桶和密度 一个简单的直方图可以是我们开始理解数据集的第一步。...下面我们就一个简单的例子来说明如何使用 KDE 和绘制相应的二维直方图: from scipy.stats import gaussian_kde # 产生和处理数据,初始化KDE data = np.vstack...因此它们无论是在彩色图中还是在灰度图中都有着同样的亮度变化: view_colormap('viridis') 如果你更喜欢彩虹方案,另一个好的选择是使用cubehelix色图: view_colormap...下面我们来创建一个 网格的子图表,其中每一行的子图表共享它们的 y 轴,而每一列的子图表共享它们的 x 轴: fig, ax = plt.subplots(2, 3, sharex='col', sharey...每个axes对象都有着属性xaxis和yaxis,表示 x 和 y 轴,其中包含着所有的属性用来指代轴的线、刻度和标签。 主要的和次要的刻度 在每个坐标轴上,都有主要的刻度和次要的刻度概念。
领取专属 10元无门槛券
手把手带您无忧上云