首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

空间通过细胞空间排布分析银屑病的严重程度

研究强调了ST在健康皮肤中同时绘制基因表达图谱和定义不同的、生物学相关的细胞“邻域”的能力。在这样做的过程中,发现了ST在捕获成熟脂肪细胞(成熟脂肪细胞和皮脂细胞)的基因表达方面的明显优势。分析还表明,免疫细胞在健康皮肤的滤泡周围和血管周围的niche中富集,而在炎症皮肤中,这种病灶定位明显改变。PsO病变在免疫细胞空间分布上有明显的变化,从健康皮肤中主要分布在毛囊周围,到银屑病皮肤的表面到真皮中部。因此,除了活动性PsO病变中免疫群体的组成变化外,它们的位置可能为了解它们的调节和功能提供了急需的见解。例如,分析发现稳态效应T细胞(TH/TC)和调节性T细胞(Tregs)与apc聚集在血管周围的滤泡周围区域。卵泡是共生微生物的家园,是病原体和过敏原进入的门户,并丰富表达免疫调节因子。小鼠研究表明,稳态免疫监视依赖于居住在卵泡中的共生体。了解健康和患病人体皮肤中特定的共生细菌种群以及它们如何影响淋巴细胞功能是积极研究的途径。 长期以来,皮肤免疫耐受的丧失被认为是导致PsO发生和延续的原因。因此,除了炎症细胞的涌入外,卵泡生态位周围的稳态免疫监视和耐受性机制的紊乱也可能是病变形成的关键诱因。与这一观点相一致的是,全球转录组学分析显示,与严重疾病相比,轻度PsO病变富含免疫调节特征。在临床上,已知头皮上的银屑病病变(人体毛囊最密集的皮肤)更难以治疗,并且更有可能累及全身。此外,在头皮和非头皮PsO中都观察到毛囊脱落、缩小和皮脂腺萎缩。卵泡上皮周围效应/调节性T细胞的战略性定位和比例导致(或防止)皮肤炎症的机制值得进一步研究。 将ST应用于活跃的银屑病病变和来自未受损伤的非病变皮肤的活检,能够在组织尺度上发现细胞组织和细胞间通讯的扭曲。通过这样做,说明了这个平台的价值,将公开可用的皮肤单细胞转录图谱放入其原生组织环境中。研究结果确定了两个表皮和一个真皮空间簇在病变皮肤横截面上显著富集(在某些情况下独特表达)。这些cluster表达了参与炎症(例如TH17激活)和表皮增殖和分化途径的基因,这些途径也在表皮修复过程中出现。长期以来,PsO被认为是一种伤口过度愈合的病理。在所有样本中都有pso富集cluster,因此可能代表疾病的“核心特征”,无论其严重程度或是否存在合并症。先前的工作报道了IL-17A在轻度疾病参与者样本中的表达与严重疾病相比的矛盾增加。尽管如此,IL-17阻断在临床上对轻度和严重疾病都有效,验证了既定的概念,即驱动整个疾病严重程度谱的机制沿着17型免疫轴聚集。 研究受到Visium ST技术目前可用分辨率的限制,该技术以50 μm的增量捕获基因表达。然而,我们整合了scRNA-seq数据集,以获得更高的细胞分辨率和空间背景。随着这项技术的发展,具有更高密度和更高分辨率的空间条形码珠的平台将提供更多关于健康和患病状态下细胞微环境的粒度。另一个关键的考虑因素是测序的深度和基因的辍学率。因此,我们的分析也可能没有捕获到罕见的细胞类型或非常低表达的基因。因此,我们避免了“缺乏证据”的争论,只关注基因的积极富集来得出结论。SpaceFold对组织结构做了两个假设:组织应该具有典型的结构,每个点的细胞类型分数表明这种细胞类型的物理坐标,因为它与起源点有关。因此,异质组织区域内斑点的坐标可能与物理细胞类型位置不对应,因此不能直接解释。然而,不同细胞类型分布区域之间的相对坐标仍然可以与使用组织细胞标志(例如,lc和黑素细胞区分基底表皮层和基底膜)进行比较来得出结论。最后,与病变样本相比,一些空间簇(0、1、2、3、8、15和16)在非病变皮肤中趋向于富集;然而,在这些cluster中观察到的样本间差异以及分析的低样本量使得这些差异在统计上不显著。

01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nat. Mach. Intell. | 多模态补全和特征的联合变分自编码器

    今天为大家介绍的是来自威斯康星大学麦迪逊分校团队的一篇关于单细胞多模态的论文。单细胞多模态数据能够测量细胞的各种特征,从而深入了解细胞和分子机制。然而,多模态数据的生成仍然昂贵且具有挑战性,同时缺失模态也经常发生。最近,机器学习方法已经被开发用于数据补全,但通常需要完全匹配的多模态数据才能学习共同的潜在特征,可能缺乏模态特异性。为了解决这些问题,作者开发了一个机器学习模型,名为JAMIE。JAMIE接受单细胞多模态数据,这些数据可以在模态之间部分匹配样本。变分自编码器学习每个模态的潜在特征。然后,跨模态匹配样本的特征被聚合以识别联合的跨模态潜在特征,然后进行重构。为了进行跨模态补全,可以使用一个模态的潜在特征和另一个模态的解码器。为了提高解释性,作者使用Shapley值来确定跨模态补全和已知样本标签的输入特征的优先级。

    02
    领券