首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas_Study01

补充:loc 和 iloc 的区别, loc 通过标签(也就是series的索引)访问元素,接受整数索引和非整数索引(因为是标签) iloc 通过整数索引访问元素,并且只能接受整数索引,这一点来看,...iloc 用法(Dataframe) iloc([这里是行标识], [这里是列标识]) 语法与loc 看上去比较类似,但功能更为单一 示例: data.iloc[:,1:4] # 返回全部行,索引为1到...4. dataframe 相关算术运算 1).如果其中一个是数值,那么这个数值会和DataFrame的每个位置上的数据进行相应的运算。...series 中的常用函数 1. get() 和 get_value() 方法 因为series 具有字典的一些特征,所以允许使用get 方法来获取数值,如果没有则返回默认值,而get_value 功能类似...补充: divmod(x, y) divmod() 函数返回当参数 1 除以参数 2 时包含商和余数的元组。

20110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 数据处理:Pandas库的使用

    1.1 Series Series是一种类似于一维数组的对象,它由一组数据(各种 NumPy 数据类型)以及一组与之相关的数据标签(即索引)组成。...(pdata)) 下表列出了DataFrame构造函数所能接受的各种数据: 类型 描述 二维ndarray 数据矩阵,还可以传入行标和列标 由数组、列表或元组组成的字典 每个序列会变成DataFrame...通过标签选取行或列 get_value, set_value 通过行和列标签选取单一值 ---- 2.5 整数索引 处理整数索引的 Pandas 对象常常难住新手,因为它与 Python 内置的列表和元组的索引语法不同...传递到apply的函数不是必须返回一个标量,还可以返回由多个值组成的Series: def f(x): return pd.Series([x.min(), x.max()], index=...如果某个索引对应多个值,则返回一个Series;而对应单个值的,则返回一个标量值: print(obj['a']) print(obj['c']) 这样会使代码变复杂,因为索引的输出类型会根据标签是否有重复发生变化

    22.8K10

    Python 数据分析(PYDA)第三版(二)

    传递多个索引数组会产生略有不同的结果;它选择与每个索引元组对应的一维数组元素: In [125]: arr = np.arange(32).reshape((8, 4)) In [126]: arr...表 5.1:DataFrame 构造函数的可能数据输入 类型 注释 2D ndarray 一组数据的矩阵,传递可选的行和列标签 数组、列表或元组的字典 每个序列都变成了 DataFrame 中的一列;所有序列必须具有相同的长度...上进行选择 与 Series 一样,DataFrame 具有专门的属性loc和iloc,用于基于标签和基于整数的索引。...类似于method="min",但等级总是在组之间增加 1,而不是在组中相等元素的数量之间增加 具有重复标签的轴索引 到目前为止,我们看过的几乎所有示例都具有唯一的轴标签(索引值)。...还有一个DataFrame.value_counts方法,但它计算考虑 DataFrame 的每一行作为元组的计数,以确定每个不同行的出现次数: In [307]: data = pd.DataFrame

    29400

    Python数据分析笔记——Numpy、Pandas库

    Numpy数组的基本运算 1、数组和标量之间的预算 2、元素级数组函数 是指对数组中每个元素执行函数运算。下面例子是对数组各元素执行平方根操作。...Pandas库 Pandas数据结构 1、Series (1)概念: Series是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签(即索引)组成。...也可以给某一列赋值一个列表或数组,其长度必须跟DataFrame长度相匹配。如果赋值的是一个Series,则对应的索引位置将被赋值,其他位置的值被赋予空值。...2、丢弃指定轴上的项 使用drop方法删除指定索引值对应的对象。 可以同时删除多个索引对应的值。 对于DataFrame,可以删除任意轴上(columns)的索引值。...obj.rank() (2)DataFrame数据结构的排序和排名 按索引值进行排列,一列或多列中的值进行排序,通过by将列名传递给sort_index. 5、缺失数据处理 (1)滤出缺失数据 使用data.dropna

    6.4K80

    python数据科学系列:pandas入门详细教程

    正因为pandas是在numpy基础上实现,其核心数据结构与numpy的ndarray十分相似,但pandas与numpy的关系不是替代,而是互为补充。...、数据分析和数据可视化全套流程操作 pandas主要面向数据处理与分析,主要具有以下功能特色: 按索引匹配的广播机制,这里的广播机制与numpy广播机制还有很大不同 便捷的数据读写操作,相比于numpy...自然毫无悬念 dataframe:无法访问单个元素,只能返回一列、多列或多行:单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....applymap,仅适用于dataframe对象,且是对dataframe中的每个元素执行函数操作,从这个角度讲,与replace类似,applymap可看作是dataframe对象的通函数。 ?...sort_index、sort_values,既适用于series也适用于dataframe,sort_index是对标签列执行排序,如果是dataframe可通过axis参数设置是对行标签还是列标签执行排序

    15K20

    Pandas 对数值进行分箱操作的4种方法总结对比

    1、between & loc Pandas .between 方法返回一个包含 True 的布尔向量,用来对应的 Series 元素位于边界值 left 和 right[1] 之间。...2、cut 可以使用 cut将值分类为离散的间隔。此函数对于从连续变量到分类变量[2] 也很有用。 cut的参数如下: x:要分箱的数组。必须是一维的。...bins:标量序列:定义允许非均匀宽度的 bin 边缘。 labels:指定返回的 bin 的标签。必须与上面的 bins 参数长度相同。...在前面的示例中,我们为每个级别定义了分数间隔,这回使每个级别的学生数量不均匀。在下面的示例中,我们将尝试将学生分类为 3 个具有相等(大约)数量的分数等级。...将 sort 设置为 False 以按其索引的升序对系列进行排序。 series 索引是指每个 bin 的区间范围,其中方括号 [ 和圆括号 ) 分别表示边界值是包含的和不包含的。

    2.7K30

    Pandas 对数值进行分箱操作的4种方法总结对比

    1、between & loc Pandas .between 方法返回一个包含 True 的布尔向量,用来对应的 Series 元素位于边界值 left 和 right[1] 之间。...2、cut 可以使用 cut将值分类为离散的间隔。此函数对于从连续变量到分类变量[2] 也很有用。 cut的参数如下: x:要分箱的数组。必须是一维的。...bins:标量序列:定义允许非均匀宽度的 bin 边缘。 labels:指定返回的 bin 的标签。必须与上面的 bins 参数长度相同。...在前面的示例中,我们为每个级别定义了分数间隔,这回使每个级别的学生数量不均匀。在下面的示例中,我们将尝试将学生分类为 3 个具有相等(大约)数量的分数等级。...将 sort 设置为 False 以按其索引的升序对系列进行排序。 series 索引是指每个 bin 的区间范围,其中方括号 [ 和圆括号 ) 分别表示边界值是包含的和不包含的。

    1.1K40

    数据导入与预处理-课程总结-01~03章

    准确性 :数据是正确的,数据存储在数据库中的值对应于真实世界的值。 时效性:是指数据仅在一定时间段内对决策具有价值的属性。数据的时效性很大程度上制约着决策的客观效果。...与Python列表不同,数组在参与算术运算时无需遍历每个元素,便可以对每个元素执行批量运算,效率更高。...DataFrame类对象的行索引位于最左侧一列,列索引位于最上面一行,且每个列索引对应着一列数据。DataFrame类对象其实可以视为若干个公用行索引的Series类对象的组合。...= df2.loc[[3,2,1]] #print(data3) print(data4) print('多标签索引\n-----') # 多个标签索引,如果标签不存在,则返回NaN # 顺序可变...变量.loc[索引] 变量.iloc[索引] 以上方式中,"loc[索引]"中的索引必须为自定义的标签索引,而"iloc[索引]"中的索引必须为自动生成的整数索引。

    3.1K20

    Pandas 2.2 中文官方教程和指南(十一·二)

    一个具有一个参数(调用的 Series 或 DataFrame)的callable函数,并返回用于索引的有效输出(上述之一)。 一个元组,包含行(和列)索引,其元素是上述输入之一。...注意 在应用可调用对象之前,将元组键解构为行(和列)索引,因此无法从可调用对象中返回元组以索引行和列。 从具有多轴选择的对象中获取值使用以下表示法(以.loc为例,但.iloc也适用)。...这是一种严格的包含协议。每个请求的标签必须在索引中,否则将引发KeyError。在切片时,如果存在于索引中,则起始边界和停止边界都将包括。整数是有效标签,但它们指的是标签而不是位置。...注意 对于.iloc索引,不支持从可调用返回元组,因为在应用可调用之前会发生行和列索引的元组解构。...当执行 Index.union() 时,对于具有不同数据类型的索引,索引必须转换为一个公共数据类型。通常情况下,虽然不是绝对的,这个数据类型是对象数据类型。

    25210

    Python 数据分析(PYDA)第三版(四)

    您可以在第十三章:数据分析示例中看到这些工具的各种应用用法。 8.1 层次索引 层次索引是 pandas 的一个重要特性,它使您能够在轴上具有多个(两个或更多)索引级别。...,从最外层级别开始,那么在具有分层索引的对象上进行数据选择性能要好得多——也就是说,调用sort_index(level=0)或sort_index()的结果。...由于right1的索引是唯一的,这种“一对多”合并(使用默认的how="inner"方法)可以保留与输出中的行对应的left1的索引值。...,元组的数组,或数组的列表(如果在levels中传递了多级数组) levels 用作分层索引级别的特定索引,如果传递了键 names 如果传递了keys和/或levels,则为创建的分层级别命名 verify_integrity...每个对应于 subplot 对象本身的两种方法;在xlim的情况下,这些方法是ax.get_xlim和ax.set_xlim。

    31200

    Pandas

    [:][m:n] DataFrame.head/tail():访问前/后五行 整数标签的特殊情况 为了防止计算机不知道用户输入的索引是基于位置还是基于标签的,pd 整数标签的索引是基于标签的,也就是说我们不能像列表一样使用...进行切片,对行的指定要使用索引或者条件,对列的索引必须使用列名称,如果有多列,则还需要借助[]将列名称括起来。...(),这个是用来将多列转化一列: pd.melt(df, id_vars=['key'], value_vars=['A', 'B']) 该函数最后返回的是一个以id_vars列作为索引,以value_vars...传入一个函数名组成的列表,则会将每一个函数的函数名作为返回值的列名,如果不希望使用函数名作为列名,可以将列表中的元素写成类似’(column_name,function)'的元组形式来指定列名为name...将样本从小到大进行排列,按照样本位置将数据划分为位置间隔相等的区间。位置间隔相同意味着样本出现的频数相同。 获得每个区间的第一个和最后一个元素的值,两者的差值即为与该位置区间对应的元素取值区间。

    9.2K30

    数据分析索引总结(中)Pandas多级索引

    但直接比较两个顺序不同的多重索引, 返回值是一个布尔值array, 并不如预期的那样。...().index sorted_multi_index==mul_index 如果是两个list, 改变顺序后与原始list相比较, 返回值只有一个 False。...:('C_3','street_4')] 使用索引标签进行切片, 是个闭区间非元组也是合法的,表示选中该层所有元素 df_using_mul.sort_index().loc[('C_2','street...第一类特殊情况:由元组构成列表 选出某几个元素,每个元组的第一个元素是第一层索引的可能取值,元组的第二个元素是第二层索引的可能取值...精确到最内层索引 df_using_mul.sort_index(...所以这里大概是有一个自动推断的过程:如果第一个位置是元组,那就默认是按照元组的相应位置去对应相应层级的索引的值;如果第一个位置是元素, 那就默认直接对应第一层索引的相应取值。

    4.6K20

    【数据处理包Pandas】多级索引的创建及使用

    import numpy as np import pandas as pd 一、元组作为一级索引 如果想产生如下图所示的学生成绩表: 因为 DataFrame 的行索引/列索引要求是不可变的,因此考虑使用元组做索引是很自然的选择...相当于scores.loc[2017,1],此时会把2017看成行索引,1看成列索引,而行索引没有2017 对于 DataFrame,应该在元组的外面再加一层中括号,写成: scores.loc[[(2017,1...)]] 当然用位置标签是最简单的: scores.iloc[2,:] 3、查询王亮2017第1学期的成绩 如果用 DataFrame 直接做查询,则表示行索引和列索引的元组外都要多加一层中括号,需要写成...可以将 MultiIndex 视为一个元组对数组,其中每个元组对都是唯一的。...注意:元组中不允许使用:,因此用slice(None)代替。 说明:多级索引的切片操作要求必须先对索引排序,因此才有上面的sort_index()函数调用。

    2100

    python数据分析——数据预处理

    返回值: shape()函数返回一个元组,元组的每个元素代表数组在对应维度上的大小。...返回值: 返回一个与 obj 相同大小的布尔类型的对象,其中为 True 的位置表示对应位置的值为空值,为 False 的位置表示对应位置的值不为空值。...这个函数返回一个布尔类型的值,表示每个元素是否是重复的。如果元素是重复的,则为True;否则为False。...columns:要删除的列的标签列表或单个标签。与labels参数功能相同,只是在axis=1的情况下使用。 level:如果DataFrame具有多层索引,则指定要删除的索引级别。...columns:要删除的列的标签列表或单个标签。与labels参数功能相同,只是在axis=1的情况下使用。 level:如果DataFrame具有多层索引,则指定要删除的索引级别。

    8510
    领券