本文处理的场景如下,hive表中的数据,对其中的多列进行判重deduplicate。...1、先解决依赖,spark相关的所有包,pom.xml spark-hive是我们进行hive表spark处理的关键。...; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.hive.HiveContext; import java.io.Serializable...; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function...; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction
在使用数据库的时候,需要将查询出来的一列按照逗号合并成一行。...原表名字为 TABLE ,表中的部分原始数据为: +---------+------------------------+ | BASIC | NAME | +-------...-+ | 计算机病毒事件,蠕虫事件,特洛伊木马事件 | +---------------------------------------------------------+ 但是在 spark...中没有 GROUP_CONCAT 命令,查找后发现命令 concat_ws : ResultDF.createOrReplaceTempView("BIGDATA") val dataDF=spark.sql...| +----------+------------------------------------------------+ 也可以用另一个方法: import org.apache.spark.sql.functions
Array[String]) { val sparkConf = new SparkConf().setMaster("local").setAppName("cocapp").set("spark.kryo.registrator...", classOf[HBaseConfiguration].getName) .set("spark.executor.memory", "4g") val sc: SparkContext...user=root&password=yangsiyi" val rows = sqlContext.jdbc(mySQLUrl, "person") val tableName = "spark...table.put(put) println("insert into success") } } 然而并没有什么乱用,发现一个问题,就是说,在RDD取值与写入HBASE的时候...Count()是可以获取到,但是如果我要在configuration中set列,然后进行查询就会报错了。暂时各种办法尝试无果,还在想办法,也不明原因。 ?
背景 ES在查询时如果数量太多,而每行记录包含的字段很多,那就会导致超出ES的查询上线,默认是100MB,但是很多场景下我们只需要返回特定的字段即可,那么如何操作呢。...fields = {"字段1","字段2"}; sourceBuilder.fetchSource(fields,null); //把查询添加放入请求中...response = client.search(request, RequestOptions.DEFAULT); //封装查询的信息...return hitList; } String[] fields = {“字段1”,“字段2”}; sourceBuilder.fetchSource(fields,null); 注意:字段不是实体类中的字段...,而是表中的名称,不是userStatus而是user_status 本篇文章如有帮助到您,请给「翎野君」点个赞,感谢您的支持。
Apache Spark 为数据科学提供了许多有价值的工具。...随着 Apache Spark 1.3.1 技术预览版的发布,强大的 Data Frame API 也可以在 HDP 上使用数据科学家使用数据挖掘和可视化来帮助构造问题架构并对学习进行微调。...在之前的步骤中,Zeppelin、Spark 1.3.1 和 Hadoop 2.6 已经构建好了。...%table 要求每行数据都以 n(换行符)分隔,每一列均以 t(制表符)分开,如下所示: 1 println("%table Log LeveltCountn" + result.mkString("...在下一篇文章中,我们将深入讨论一个具体的数据科学问题,并展示如何使用 Zeppelin、Spark SQL 和 MLLib 来创建一个使用 HDP、Spark 和 Zeppelin 的数据科学项目。
notpad 中文乱码 多列粘贴:在列模式中选中才能在粘贴到列模式中 3.6. Notepad++的列编辑功能 下面来解释Notepad++中的强大且好用的列编辑功能。 3.6.1....当有些高级的操作,需要对不同的列,同时进行编辑的话,那么列编辑模式,就非常有用了。 3.6.2....Notepad++的列编辑模式的基本操作 在Notepad++中,按住Alt键之后,就处于列(编辑)模式了。 比如,按住Alt键,此处从上到下,选择多列: 例 3.20....列编辑:删除多行内容 然后也可以同时删除多行内容: 先按住Alt键,选后同时选取多列: 然后松掉Alt键,点击右键选择删除,或者直接按键盘上面的Delete键,都可以实现删除所选的多行中对应部分的内容:...列编辑:同时复制和粘贴多列 然后在Notepad++中,新建一个页面,将拷贝的内容,粘贴到新建页面中: 然后再用列模式去选取此部分内容: 然后Ctrl+C复制所选内容,再回到要粘贴的地方,同样先是进入列模式
读取文档数据的各列的每行中 1、该文件的内容被读 [root@dell leekwen]# cat userpwd 1412230101 ty001 1412230102 ty002..., 它的第一列值是1512430102, 它的第二列值为ty003 当前处理的是第4, 内容是:1511230102 ty004, 它的第一列值是1511230102,...它的第二列值为ty004 当前处理的是第5, 内容是:1411230102 ty002, 它的第一列值是1411230102, 它的第二列值为ty002 当前处理的是第6, 内容是...它的第一列值是1412290102, 它的第二列值为yt012 当前处理的是第8, 内容是:1510230102 yt022, 它的第一列值是1510230102,...它的第二列值为yt022 当前处理的是第9, 内容是:1512231212 yt032, 它的第一列值是1512231212, 它的第二列值yt032 版权声明:本文博客原创文章
使用Spark读取Hive中的数据 2018-7-25 作者: 张子阳 分类: 大数据处理 在默认情况下,Hive使用MapReduce来对数据进行操作和运算,即将HQL语句翻译成MapReduce...而MapReduce的执行速度是比较慢的,一种改进方案就是使用Spark来进行数据的查找和运算。...还有一种方式,可以称之为Spark on Hive:即使用Hive作为Spark的数据源,用Spark来读取HIVE的表数据(数据仍存储在HDFS上)。...通过这里的配置,让Spark与Hive的元数据库建立起联系,Spark就可以获得Hive中有哪些库、表、分区、字段等信息。 配置Hive的元数据,可以参考 配置Hive使用MySql记录元数据。...spark默认支持java、scala和python三种语言编写的作业。可以看出,大部分的逻辑都是要通过python/java/scala编程来实现的。
在Python中,我们创建计算列的方式与PQ中非常相似,创建一列,计算将应用于这整个列,而不是像Excel中的“下拉”方法那样逐行进行。要创建计算列,步骤一般是:先创建列,然后为其指定计算。...panda数据框架中的字符串操作 让我们看看下面的示例,从公司名称列中拆分中文和英文名称。df[‘公司名称’]是一个pandas系列,有点像Excel或Power Query中的列。...图2 数据框架中的日期时间操作 为便于演示,我们使用下面网站中的数据: http://fund.eastmoney.com/company/default.html 图3 我们要计算基金公司成立的年数...首先,我们需要知道该列中存储的数据类型,这可以通过检查列中的第一项来找到答案。 图4 很明显,该列包含的是字符串数据。 将该列转换为datetime对象,这是Python中日期和时间的标准数据类型。...图6 数据类型转换 & 数据框架上的简单算术运算 最后,我们将使用“成年年份”列来计算公司的年龄。
注:此处的Pandas特指DataFrame数据结构,Spark特指spark.sql下的DataFrame数据结构。 ?...无论是pandas的DataFrame还是spark.sql的DataFrame,获取指定一列是一种很常见的需求场景,获取指定列之后可以用于提取原数据的子集,也可以根据该列衍生其他列。...02 spark.sql中DataFrame获取指定列 spark.sql中也提供了名为DataFrame的核心数据抽象,其与Pandas中DataFrame有很多相近之处,但也有许多不同,典型区别包括...仍然构造一个类似于前述数据的Spark中的DataFrame,数据如下: ?...03 小结 本文分别列举了Pandas和Spark.sql中DataFrame数据结构提取特定列的多种实现,其中Pandas中DataFrame提取一列既可用于得到单列的Series对象,也可用于得到一个只有单列的
吴军博士在《数学之美》中深入浅出地介绍了由Google的佩奇与布林提出的PageRank算法,这是一种民主表决式网页排名技术。...同时,该算法还要对来自不同网页的链接区别对待,排名越高的网页,则其权重会更高,即所谓网站贡献的链接权更大。...但问题是,如何获得X1,X2,X3,X4这些网页的权重呢?答案是权重等于这些网页自身的Rank。然而,这些网页的Rank又是通过链接它的网页的权重计算而来,于是就陷入了“鸡与蛋”的怪圈。...解决办法是为所有网页设定一个相同的Rank初始值,然后利用迭代的方式来逐步求解。 在《数学之美》第10章的延伸阅读中,有更详细的算法计算,有兴趣的同学可以自行翻阅。...由于PageRank实则是线性代数中的矩阵计算,佩奇和拉里已经证明了这个算法是收敛的。当两次迭代获得结果差异非常小,接近于0时,就可以停止迭代计算。
在报表系统中,我们通常会有这样的需求,就是由用户来决定报表中需要显示的数据,比如数据源中共有八列数据,用户可以自己选择在报表中显示哪些列,并且能够自动调整列的宽度,已铺满整个页面。...本文就讲解一下ActiveReports中该功能的实现方法。 第一步:设计包含所有列的报表模板,将数据源中的所有列先放置到报表设计界面,并设置你需要的列宽,最终界面如下: ?...第二步:在报表的后台代码中添加一个Columns的属性,用于接收用户选择的列,同时,在报表的ReportStart事件中添加以下代码: /// /// 用户选择的列名称...].Width; // 设置控件坐标 if (tmp == null) { // 设置需要显示的第一列坐标...源码下载: 动态设置报表中的列数量以及列宽度
大家好,又见面了,我是你们的朋友全栈君。 C++中提供了sort函数,可以让程序员轻松地调用排序算法,JAVA中也有相应的函数。...Arrays.sort(a); for (i=0;i<=4;i++) { System.out.println(a[i]+" "); } } } 2.基本元素从大到小排序: 由于要用到sort中的第二个参数...可以使用Interger.intvalue()获得其中int的值 下面a是int型数组,b是Interger型的数组,a拷贝到b中,方便从大到小排序。capare中返回值是1表示需要交换。...和2差不多,都是重载比较器,以下程序实现了点的排序,其中x小的拍前面,x一样时y小的排前面 package test; import java.util.*; class point { int...,那么就用到sort中的第二个和第三个参数sort(a,p1,p2,cmp),表示对a数组的[p1,p2)(注意左闭右开)部分按cmp规则进行排序 发布者:全栈程序员栈长,转载请注明出处:https:
Mysql中的列类型: 数字类型 字符串类型 布尔型 日期时间类型 数字类型: 1个字节=8比特,但数字里有一个比特用于符号占位 TINYINT 占用1个字节,表示范围:-128~127 SMALLINT...支持的范围是1000-01-01 ~ 9999-12-31 TIME 支持的范围是00:00:00 ~ 23:59:59 DATETIME 支持的范围是1000-01-01 00:00:00 ~ 9999...电话、手机号码:有格式要求 用户名:必须唯一 登录密码:密码不能为空字符串且长度不能少于N位 员工所在部门:可取值必须在部门表中存在过 主键约束: 列名 类型 PRIMARY KEY 声明为“...表中所有的记录行会自动按照主键列上的值进行排序。 一个表至多只能有一个主键列。 唯一约束: 列名 类型 UNIQUE 声明为“唯一”的列上不能出现重复值,但可以出现多个NULL值。...非空约束: 列名 类型 NOT NULL 声明为“非空”约束的列上不能出现NULL,但可以重复 检查约束对于Mysql不支持 默认值约束 列名 类型 Default 值 声明为“默认值”约束的列上没有值的将会默认采用默认设置的值
下面这段code用于在Spark Streaming job中读取Kafka的message: .........以上代码虽然可以正常运行,不过却出现了一个问题:当message size非常大(比如10MB/message)的时候,spark端的处理速度非常缓慢,在3brokers的Kafka + 32 nodes...的spark上运行时(本job的executorinstance # =16, 1 core/instance),基本上在的速度。...这样修改过之后,果然新建的topic具有了16个partition。可是在向新生成的topic中publishmessage之后却发现,并不是所有partition中都有数据。...显然publish到Kafka中的数据没有平均分布。
Excel中两列数据的差异对比,方法非常多,比如简单的直接用等式处理,到使用Excel2016的新功能Power Query(Excel2010或Excel2013可到微软官方下载相应的插件...一、简单的直接等式对比 简单的直接等式对比进适用于数据排列位置顺序完全一致的情况,如下图所示: 二、使用Vlookup函数进行数据的匹配对比 通过vlookup函数法可以实现从一个列数据读取另一列数据...vlookup函数除了适用于两列对比,还可以用于表间的数据对比,如下图所示: 三、使用数据透视进行数据对比 对于大规模的数据对比来说,数据透视法非常好用,具体使用方法也很简单,即将2列数据合并后...1、将需要对比的2个表的数据加载到Power Query 2、以完全外部的方式合并查询 3、展开合并的数据 4、添加差异比对列 5、按需要筛选去掉无差异部分 6、按需要调整相应的列就可以将差异结果返回...Excel里了 在线M函数快查及系列文章链接(建议收藏在浏览器中): https://app.powerbi.com/view?
本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。...使用spark的Read .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...从文件中读取数据并将数据放入内存后我们发现,最后一列数据在哪里,列年龄必须有一个整数数据类型,但是我们看到了一些其他的东西。这不是我们所期望的。一团糟,完全不匹配,不是吗?...我们已经成功地将“|”分隔的列(“name”)数据分成两列。现在,数据更加干净,可以轻松地使用。...现在的数据看起来像我们想要的那样。
本文将展示 1、如何使用spark-streaming接入TCP数据并进行过滤; 2、如何使用spark-streaming接入TCP数据并进行wordcount; 内容如下: 1、使用maven,先解决... 1、接收TCP数据并过滤,打印含有error的行 package com.xiaoju.dqa.realtime_streaming; import...org.apache.spark.SparkConf; import org.apache.spark.api.java.function.Function; import org.apache.spark.streaming.api.java.JavaDStream...; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction...; import org.apache.spark.streaming.api.java.*; import org.apache.spark.streaming.api.java.JavaPairDStream
一、前言 前几天在Python最强王者群【wen】问了一个pandas数据处理的问题,一起来看看吧。...二、实现过程 这里【隔壁山楂】给了一个提示,如下所示: 直接使用内置函数abs()取绝对值就阔以了,轻轻松松,顺利地解决了粉丝的问题! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【wen】提问,感谢【隔壁山楂】给出的思路和代码解析,感谢【莫生气】等人参与学习交流。
Spark最初由美国加州伯克利大学的AMP实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。...Hadoop MapReduce快上百倍,基于磁盘的执行速度也能快十倍; 容易使用:Spark支持使用Scala、Java、Python和R语言进行编程,简洁的API设计有助于用户轻松构建并行程序,并且可以通过...:Spark可运行于独立的集群模式中,或者运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源。...Spark最大的特点就是将计算数据、中间结果都存储在内存中,大大减少了IO开销 Spark提供了多种高层次、简洁的API,通常情况下,对于实现相同功能的应用程序,Spark的代码量要比Hadoop少2-...Spark的部署模式 Spark支持的三种典型集群部署方式,即standalone、Spark on Mesos和Spark on YARN;然后,介绍在企业中是如何具体部署和应用Spark框架的,在企业实际应用环境中
领取专属 10元无门槛券
手把手带您无忧上云