首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark数据工程|专题(1)——引入,安装,数据填充,异常处理等

不过不要觉得这个是一件大好事,实际上scala的应用还是有些复杂的,坑埋在了其他地方……不过这里我们不详谈。 当然了,之后的所有代码我们都会使用Scala来书写。...因为这里的语句很简单,一看就知道这个数据在第一行第一列,所以也很好写后续的操作。 说完平均数,中位数,众数之后,还有两个比较好解决的需求是最大值和最小值。...Request 5: 对某一列中空值的部分填成这一列已有数据的最大值/最小值。 说它好处理的原因是,在SQL中有和mean类似的max和min算子,所以代码也非常类似,这里就不解释了。...但这里还是用到了挺多scala中的一些语法特点,还是值得分析一下。...有的时候,需求上会希望保留新列,为了保证变化是正确的。 Request 7: 和之前类似,按平均值进行空值填充,并保留产生的新列。 那应该如何操作呢?

6.5K40

第四范式OpenMLDB: 拓展Spark源码实现高性能Join

基于Spark算子实现LastJoin的思路是首先对左表添加索引列,然后使用标准LeftOuterJoin,最后对拼接结果进行reduce和去掉索引行,虽然可以实现LastJoin语义但性能还是有很大瓶颈...有可能对输入数据进行扩充,也就是1:N的变换,而所有新增的行都拥有第一步进行索引列拓展的unique id,因此针对unique id进行reduce即可,这里使用Spark DataFrame的groupByKey...和mapGroups接口(注意Spark 2.0以下不支持此API),同时如果有额外的排序字段还可以取得每个组的最大值或最小值。...首先是右表比较小时Spark会自动优化成BrocastHashJoin,这时右表通过broadcast拷贝到所有executor的内存里,遍历右表可以找到所有符合join condiction的行,如果右表没有符合条件则保留左表...对应的实现在子类HashJoin.scala中,原理与前面也类似,调用outerJoin函数遍历stream table的时候,修改核心的遍历逻辑,保证左表在拼不到时保留并添加null,在拼到一行时立即返回即可

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark MLlib特征处理 之 StringIndexer、IndexToString使用说明以及源码剖析

    更多内容参考我的大数据学习之路 文档说明 StringIndexer 字符串转索引 StringIndexer可以把字符串的列按照出现频率进行排序,出现次数最高的对应的Index为0。...针对训练集中没有出现的字符串值,spark提供了几种处理的方法: error,直接抛出异常 skip,跳过该样本数据 keep,使用一个新的最大索引,来表示所有未出现的值 下面是基于Spark MLlib...(StructType.scala:265) at org.apache.spark.ml.feature.IndexToString.transformSchema(StringIndexer.scala...labelToIndex(label) //如果正常,就进行转换 } else if (keepInvalid) { labels.length // 如果是keep,就返回索引的最大值...(即数组的长度) } else { ... // 如果是error,就抛出异常 } } // 保留之前所有的列,新增一个字段,并设置字段的

    2.7K00

    一天学完spark的Scala基础语法教程一、基础语法与变量(idea版本)

    示例:def myMethodName() 程序文件名 - 程序文件的名称应该与对象名称完全匹配(新版本不需要了,但建议保留这种习惯)。...Scala 程序里,语句末尾的分号通常是可选的。如果你愿意可以输入一个,但若一行里仅 有一个语句也可不写。另一方面,如果一行里写多个语句那么分号是需要的。...Any Any是所有其他类的超类 AnyRef AnyRef类是Scala里所有引用类(reference class)的基类 上表中列出的数据类型都是对象,也就是说scala没有java中的原生类型...Scala 转义字符 下表列出了常见的转义字符: 转义字符 Unicode 描述 \b \u0008 退格(BS) ,将当前位置移到前一列 \t \u0009 水平制表(HT) (跳到下一个TAB...;//double不需要 var s="Hello"; } } 总结: 到这里有关spark的Scala基础语法教程一、基础语法与变量(idea版本)就讲解完了。

    92030

    Databircks连城:Spark SQL结构化数据分析

    在Spark 1.3.0以Spark SQL原有的SchemaRDD为蓝本,引入了Spark DataFrame API,不仅为Scala、Python、Java三种语言环境提供了形如R和Pandas的...左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person`类的内部结构。...人工合并整个JSON数据集所有记录的schema是一件十分枯燥繁琐的任务。Spark SQL在处理JSON数据时可以自动扫描整个数据集,得到所有记录中出现的数据列的全集,推导出完整的schema。...对此,Spark SQL的JSON数据源作出的处理是,将出现的所有列都纳入最终的schema中,对于名称相同但类型不同的列,取所有类型的公共父类型(例如int和double的公共父类型为double)。...简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等一些基本的统计信息。

    1.9K101

    DataFrame的真正含义正在被杀死,什么才是真正的DataFrame?

    对于 DataFrame 来说,它的列类型可以在运行时推断,并不需要提前知晓,也不要求所有列都是一个类型。...但其实它只是 spark.sql的另一种形式(当然 Spark DataFrame 确实在 spark.sql 下)。...Mars DataFrame 因此这里要说到 Mars DataFrame,其实我们做 Mars 的初衷和这篇 paper 的想法是一致的,因为现有的系统虽然能很好地解决规模问题,但那些传统数据科学包中好的部分却被人遗忘了...,我们希望 Mars 能保留这些库中好的部分,又能解决规模问题,也能充分利用新硬件。...在单机真正执行时,根据初始数据的位置,Mars 会自动把数据分散到多核或者多卡执行;对于分布式,会将计算分散到多台机器执行。 Mars DataFrame 保留了行标签、列标签和类型的概念。

    2.5K30

    深入理解XGBoost:分布式实现

    1.2 RDD Spark引入了RDD概念,RDD是分布式内存数据的抽象,是一个容错的、并行的数据结构,是Spark中基本的数据结构,所有计算均基于该结构进行,Spark通过RDD和RDD操作设计上层算法...mapPartitions:获取每个分区的迭代器,在函数中对整个迭代器的元素(即整个分区的元素)进行操作。 union:将两个RDD合并,合并后不进行去重操作,保留所有元素。...使用该操作的前提是需要保证RDD元素的数据类型相同。 filter:对元素进行过滤,对每个元素应用函数,返回值为True的元素被保留。 sample:对RDD中的元素进行采样,获取所有元素的子集。...describe(cols:String*):计算数值型列的统计信息,包括数量、均值、标准差、最小值、最大值。...它的参数有以下2个。 1)min:默认为0.0,为转换后所有特征的上边界。 2)max:默认为1.0,为转换后所有特征的下边界。

    4.2K30

    详解Apache Hudi Schema Evolution(模式演进)

    场景 • 可以添加、删除、修改和移动列(包括嵌套列) • 分区列不能演进 • 不能对 Array 类型的嵌套列进行添加、删除或操作 SparkSQL模式演进以及语法描述 使用模式演进之前,请先设置spark.sql.extensions...某字段 • 如果设置为FIRST,那么新加的列在表的第一列 • 如果设置为AFTER 某字段,将在某字段后添加新列 • 如果设置为空,只有当新的子列被添加到嵌套列时,才能使用 FIRST。...Yes Yes 添加具有默认值的新复杂类型字段(map和array) Yes Yes 添加新的可为空列并更改字段的顺序 No No 如果使用演进模式的写入仅更新了一些基本文件而不是全部,则写入成功但读取失败...然而如果 upsert 触及所有基本文件,则读取将成功 添加自定义可为空的 Hudi 元列,例如 _hoodie_meta_col Yes Yes 将根级别字段的数据类型从 int 提升为 long...No No 对于Spark数据源的MOR表,写入成功但读取失败。

    2.1K30

    Spark DataSource API v2 版本对比 v1有哪些改进?

    v2 的目标 针对 Scala / Java 设计一个新的 DataSource API: Java Friendly 没有依赖 DataFrame,RDD, SparkSession 等 支持谓词下推和列剪裁...DataSource API v2 版本主要关注读取,写入和优化扩展,而无需添加像数据更新一样的新功能。 v2 不希望达成的目标 定义 Scala 和 Java 以外的语言的数据源。...v2 中期望出现的API 保留Java 兼容性的最佳方法是在 Java 中编写 API。很容易处理 Scala 中的 Java 类/接口,但反之则不亦然。...可以基于数据源实现支持 schema 的演进。Spark 仍然可以追加和读取那些不同的 来自数据源预定义或推断 schema 的数据。并不是所有的数据源都支持 Schema 的演进。...例如,Parquet 和 JSON 支持 schema 的演进,但是 CSV 却没有。 所有的数据源优化,如列剪裁,谓词下推,列式读取等。

    1.1K30

    Spark DataSource API v2 版本对比 v1有哪些改进?

    v2 的目标 针对 Scala / Java 设计一个新的 DataSource API: Java Friendly 没有依赖 DataFrame,RDD, SparkSession 等 支持谓词下推和列剪裁...DataSource API v2 版本主要关注读取,写入和优化扩展,而无需添加像数据更新一样的新功能。 v2 不希望达成的目标 定义 Scala 和 Java 以外的语言的数据源。...v2 中期望出现的API 保留Java 兼容性的最佳方法是在 Java 中编写 API。很容易处理 Scala 中的 Java 类/接口,但反之则不亦然。...可以基于数据源实现支持 schema 的演进。Spark 仍然可以追加和读取那些不同的 来自数据源预定义或推断 schema 的数据。并不是所有的数据源都支持 Schema 的演进。...例如,Parquet 和 JSON 支持 schema 的演进,但是 CSV 却没有。 所有的数据源优化,如列剪裁,谓词下推,列式读取等。

    93240

    查询性能提升3倍!Apache Hudi 查询优化了解下?

    从上图可以看到,对于按字典顺序排列的 3 元组整数,只有第一列能够对所有具有相同值的记录具有关键的局部性属性:例如所有记录都具有以“开头的值” 1"、"2"、"3"(在第一列中)很好地聚簇在一起。...但是如果尝试在第三列中查找所有值为"5"的值,会发现这些值现在分散在所有地方,根本没有局部性,过滤效果很差。...,该方法的局部性使用到所有列。...以类似的方式,希尔伯特曲线允许将 N 维空间中的点(我们表中的行)映射到一维曲线上,基本上对它们进行排序,同时仍然保留局部性的关键属性,在此处[4]阅读有关希尔伯特曲线的更多详细信息,到目前为止我们的实验表明...结果 我们总结了以下的测试结果 可以看到多列线性排序对于按列(Q2、Q3)以外的列进行过滤的查询不是很有效,这与空间填充曲线(Z-order 和 Hilbert)形成了非常明显的对比,后者将查询时间加快多达

    1.6K10

    大数据入门与实战-Spark上手

    在这里,Spark和MapReduce将并排运行,以涵盖集群上的所有火花作业。...但是,您也可以在内存中保留 RDD,在这种情况下,Spark会在群集上保留元素,以便在下次查询时更快地访问。还支持在磁盘上保留RDD或在多个节点上复制。...其他的这里不再一一列举,想要了解更多的,大家可以看下:Spark核心编程 4.5 RDD 操作 -reduce(func):使用函数func(它接受两个参数并返回一个)来聚合数据集的元素。...5.2 打开Spark-Shell 以下命令用于打开spark shell。通常,使用Scala构建spark。因此,Spark程序在Scala环境中运行。...5.6 缓存转换 可以使用persist()或cache()方法标记要保留的RDD。第一次在动作中计算它,它将保留在节点的内存中。使用以下命令将中间转换存储在内存中。

    1.1K20

    原 荐 SparkSQL简介及入门

    但是,随着Spark的发展,对于野心勃勃的Spark团队来说,Shark对于hive的太多依赖(如采用hive的语法解析器、查询优化器等等),制约了Spark的One Stack rule them all...2014年6月1日,Shark项目和SparkSQL项目的主持人Reynold Xin宣布:停止对Shark的开发,团队将所有资源放SparkSQL项目上,至此,Shark的发展画上了句话。...显然这种内存存储方式对于基于内存计算的spark来说,很昂贵也负担不起) 2、SparkSql的存储方式     对于内存列存储来说,将所有原生数据类型的列采用原生数组来存储,将Hive支持的复杂数据类型...从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。所以它们就有了如下这些优缺点对比: 1>在数据写入上的对比     1)行存储的写入是一次完成。...商品的其他数据列,例如商品URL、商品描述、商品所属店铺,等等,对这个查询都是没有意义的。     而列式数据库只需要读取存储着“时间、商品、销量”的数据列,而行式数据库需要读取所有的数据列。

    2.5K60

    Spark入门基础深度解析图解

    1、Scala解析   Ⅰ、Scala解析器   Scala解析器会快速编译Scala代码为字节码然后交给JVM运行; REPL -> Read(取值) -> Evaluation(求值) -> Print...2、Spark体系概览 – Spark的地位图解 ? 3、Spark vs MapReduce的计算模型图解   Spark相对于Hadoop最大的不同在于迭代式计算模型; ?...一个RDD在逻辑上抽象的代表了一个HDFS文件,但实际上被切分为多个分区(块)散落在集群的不同节点上。 ? 8、transformation和action原理剖析图解 ?...  Ⅰ、Spark自定义二次排序: 需要Javabean实现Ordered 和 Serializable接口,然后在自定义的JavaBean里面定义需要进行排序的列, 并为列属性提供构造方法...Ⅱ、RDD自动进行内存和磁盘之间的权衡和切换的机制,就是RDD弹性特点所在;   Ⅲ、SparkContext是Spark所有功能的入口,作用包括初始化核心组件(DAGScheduler、TaskScheduler

    52720
    领券