首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

独家 | 一文读懂PySpark数据框(附实例)

数据框的数据源 在PySpark中有多种方法可以创建数据框: 可以从任一CSV、JSON、XML,或Parquet文件中加载数据。...我们将会以CSV文件格式加载这个数据源到一个数据框对象中,然后我们将学习可以使用在这个数据框上的不同的数据转换方法。 1. 从CSV文件中读取数据 让我们从一个CSV文件中加载数据。...这里我们会用到spark.read.csv方法来将数据加载到一个DataFrame对象(fifa_df)中。代码如下: spark.read.format[csv/json] 2....列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4. 描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。...分组数据 GroupBy 被用于基于指定列的数据框的分组。这里,我们将要基于Race列对数据框进行分组,然后计算各分组的行数(使用count方法),如此我们可以找出某个特定种族的记录数。 4.

6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    2021年大数据Spark(三十二):SparkSQL的External DataSource

    1)、结构化数据(Structured) 结构化数据源可提供有效的存储和性能。例如,Parquet和ORC等柱状格式使从列的子集中提取值变得更加容易。...这些类型的源通常要求数据周围的上下文是可解析的。 3)、半结构化数据(Semi-Structured) 半结构化数据源是按记录构建的,但不一定具有跨越所有记录的明确定义的全局模式。...默认值为false,如果数据文件首行是列名称,设置为true  3)、是否自动推断每个列的数据类型:inferSchema 默认值为false,可以设置为true 官方提供案例: 当读取CSV/...第一点:首行是列的名称,如下方式读取数据文件        // TODO: 读取TSV格式数据         val ratingsDF: DataFrame = spark.read             ...单分区模式  方式二:多分区模式,可以设置列的名称,作为分区字段及列的值范围和分区数目  方式三:高度自由分区模式,通过设置条件语句设置分区数据及各个分区数据范围 当加载读取RDBMS表的数据量不大时

    2.3K20

    有比Pandas 更好的替代吗?对比Vaex, Dask, PySpark, Modin 和Julia

    我将在具有16GB RAM的4核笔记本电脑上进行这些操作。...列分组并计算总和和平均值 sorting—对合并数据集进行3次排序(如果库允许) ?...看起来Dask可以非常快速地加载CSV文件,但是原因是Dask的延迟操作模式。加载被推迟,直到我在聚合过程中实现结果为止。这意味着Dask仅准备加载和合并,但具体加载的操作是与聚合一起执行的。...Spark性能 我使用了Dask部分中介绍的pySpark进行了相同的性能测试,结果相似。 ? 区别在于,spark读取csv的一部分可以推断数据的架构。...通过将环境变量JULIA_NUM_THREADS设置为要使用的内核数,可以运行具有更多内核的julia。

    4.8K10

    收藏!6道常见hadoop面试题及答案解析

    Hadoop中使用的一个常用术语是“Schema-On-Read”。这意味着未处理(也称为原始)的数据可以被加载到HDFS,其具有基于处理应用的需求在处理之时应用的结构。...Hadoop的处理框架(如Spark,Pig,Hive,Impala等)处理数据的不同子集,并且不需要管理对共享数据的访问。...CSV文件CSV文件通常用于在Hadoop和外部系统之间交换数据。CSV是可读和可解析的。CSV可以方便地用于从数据库到Hadoop或到分析数据库的批量加载。...CSV文件不支持块压缩,因此压缩CSV文件会有明显的读取性能成本。   JSON文件JSON记录与JSON文件不同;每一行都是其JSON记录。...像CSV一样,序列文件不存储元数据,因此只有模式进化才将新字段附加到记录的末尾。与CSV文件不同,序列文件确实支持块压缩。序列文件也是可拆分的。

    2.9K80

    Apache CarbonData 简介

    这使得可以使用 Spark SQL 直接查询 CarbonData 文件,从而提供更快、更高效的查询结果。 支持全局字典编码 此功能有助于压缩表中的公共列,从而提高过滤查询的性能。...高效的数据加载 Apache CarbonData 可以通过其对多核处理的支持来执行并行数据加载。它允许对数据进行分区、分桶和重新分区,以实现更快的数据加载。...由于其先进的数据预处理功能,CarbonData 中的数据加载操作更加高效。 可扩展性和兼容性 Apache CarbonData 具有出色的可扩展性,可以跨各种硬件设置有效管理海量数据集。...同时,Blocklet级索引和数据存储在一起,减少查询过程中的I/O操作。 字典编码: 为了优化具有高基数的字符串类型列,CarbonData 使用全局字典。...这个全局字典维护唯一列值到较短代理键的映射,然后将其用于存储和处理,从而使过滤等操作更快。 三、相对于较旧的大数据格式的重要性 传统的大数据格式(例如 CSV 和 Avro)存在一定的局限性。

    62720

    基于Apache Spark机器学习的客户流失预测

    用以下命令启动Spark shell: $ spark -shell --master local [1] 从CSV文件加载数据 [Picture5.png] 首先,我们将导入SQL和机器学习包。...2.0,我们指定要加载到数据集中的数据源和模式。...请注意,对于Spark 2.0,将数据加载到DataFrame中时指定模式将比模式推断提供更好的性能。我们缓存数据集以便快速重复访问。我们也打印数据集的模式。...转换器(Transformer):将一个DataFrame转换为另一个DataFrame的算法。我们将使用变换器来获取具有特征矢量列的DataFrame。...Spark ML支持使用变换/估计流水线进行k-fold交叉验证,以使用称为网格搜索的过程尝试不同的参数组合,在该过程中设置要测试的参数,并使用交叉验证评估器构建模型选择工作流程。

    3.5K70

    使用Spark轻松做数据透视(Pivot)

    建模拟数据 先来模拟个数据吧,按照前面的例子,建个csv,这里多加了一列s2,是为了做多透视列的, date,project,value,s2 2018-01,p1,100,12 2018-01,p2,200,33...csv路径 .csv("E:\\devlop\\workspace\\sparkdemo\\src\\main\\java\\com\\dafei1288\\spark\\data1.csv...对加载后的dataset只需要进行3步设置 groupBy 设置分组列 pivot 设置pivot列 agg 设置聚合方式,可以是求和、平均等聚合函数 我们得到的输出结果如下: +-------+---...注册成了表f,使用spark sql语句,这里和oracle的透视语句类似 pivot语法: pivot( 聚合列 for 待转换列 in (列值) ) 其语法还是比较简单的。...为了防止OOM的情况,spark对pivot的数据量进行了限制,其可以通过spark.sql.pivotMaxValues 来进行修改,默认值为10000,这里是指piovt后的列数。

    3.3K20

    如何使用Apache Spark MLlib预测电信客户流失

    我们将使用Python编程语言来执行我们的分析和建模,并且我们将为该任务使用各种相关的工具。为了加载和处理数据,我们将使用Spark的DataFrames API。...使用Spark DataFrames加载数据 我们将使我们的模型拟合由SGI托管的UC Irvine机器学习库提供的流失数据集。...其余的字段将进行公平的竞赛,来产生独立变量,这些变量与模型结合使用用来生成预测值。 要将这些数据加载到Spark DataFrame中,我们只需告诉Spark每个字段的类型。...我们使用Spark Spark项目之外的spark-csv包来解释CSV格式的数据: from pyspark.sql import SQLContext from pyspark.sql.types...我们将使用MLlib来训练和评估一个可以预测用户是否可能流失的随机森林模型。 监督机器学习模型的开发和评估的广泛流程如下所示: 流程从数据集开始,数据集由可能具有多种类型的列组成。

    4K10

    Spark数据工程|专题(1)——引入,安装,数据填充,异常处理等

    运算速度快的特点让其成为了算法与数据工程任务中的必备技能之一,在大厂的面试中也经常出现对Spark的考察。 不过Spark本身其实是具有一定的学习门槛的。...但csv数据一般都会有一列特征名(也就是header),因此在读取的时候,要额外处理一下,核心代码为 val df = spark.read.option("header", true).csv("src...不同的数据自然要有不同的处理方式,因此我们这里也会介绍使用不同的方式进行填充时,对应的不同的代码。在这一部分,我们会介绍以平均数,中位数,众数和自己手动处理方式进行空值填充的方式。...在这个界面中,画框的部分都是具有信息量的部分,可以看出来执行好和没有执行好的部分,看出不同的任务,它们完成的情况。点击不同的区域自然还会出现不同的任务。...这里主要的观察是,Spark会把代码拆成不同的job,然后不同的job内会拆成不同的stage和task。当然这里具有一些Spark的专有的名词,它们都具有不同的意义。

    6.5K40

    如何管理Spark的分区

    当我们使用Spark加载数据源并进行一些列转换时,Spark会将数据拆分为多个分区Partition,并在分区上并行执行计算。..., partitionExprs: _*) } 解释 返回一个按照指定分区列的新的DataSet,具体的分区数量有参数spark.sql.shuffle.partitions默认指定,该默认值为200...repartition除了可以指定具体的分区数之外,还可以指定具体的分区字段。我们可以使用下面的示例来探究如何使用特定的列对DataFrame进行重新分区。...对于小于1000个分区数的情况而言,调度太多的小任务所产生的影响相对较小。但是,如果有成千上万个分区,那么Spark会变得非常慢。 spark中的shuffle分区数是静态的。...它不会随着不同的数据大小而变化。

    2K10

    【Spark手机流量日志处理】使用SparkSQL按月统计流量使用量最多的用户

    作者 :“大数据小禅” 文章简介:本篇文章属于Spark系列文章,专栏将会记录从spark基础到进阶的内容 内容涉及到Spark的入门集群搭建,核心组件,RDD,算子的使用,底层原理,SparkCore...SparkSQL快速入门案例 准备数据 我们假设有一个CSV文件employee.csv,包含了员工的信息,如下所示: id,name,age,gender,salary 1,Jack,25,M,5000....appName("Spark SQL Demo") .getOrCreate() //加载CSV文件 //使用SparkSession对象的read方法加载CSV文件: val df = spark.read...表示第一行是列名,inferSchema=true表示自动推断列的数据类型。..."true") .csv("employee.csv") df.createOrReplaceTempView("employee") val result = spark.sql("SELECT

    63630

    大数据Python:3大数据分析工具

    由于可以对数据执行的许多操作的复杂性,本文将重点介绍如何加载数据并获取一小部分数据样本。 对于列出的每个工具,我将提供链接以了解更多信息。...quotechar="'", names=headers) 大约一秒后它应该回复: [6844 rows x 4 columns] In [3]: 如您所见,我们有大约7000行数据,我们可以看到它找到了四列与上述模式匹配的列...让我们使用PySpark Shell加载我们的示例数据。...dataframe = spark.read.format("csv").option("header","false").option("mode","DROPMALFORMED").option("...例如,我们可以按时间映射日志条目以获得具有两列的DataFrame:一分钟内的日志数和当前分钟: +------------------+---+ | 2018-08-01 17:10 | 4 | +-

    4.2K20

    SparkSQL

    DataFrame与RDD的主要区别在于,DataFrame带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。 Spark SQL性能上比RDD要高。...三者有许多共同的函数,如filter,排序等。 三者都会根据Spark的内存情况自动缓存运算。 三者都有分区的概念。 3、SparkSQL特点 易整合 使用相同的方式连接不同的数据源。...统一的数据访问方式。 使用相同的方式连接不同的数据源。 兼容Hive 在已有的仓库上直接运行SQL或者HQL。 标准的数据连接。...三、SparkSQL数据加载和保存 1、加载数据 spark.read.load是加载数据的通用方法。...…")].load("…") // format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"text" // load("…"):在"csv

    35050

    基于Spark的机器学习实践 (二) - 初识MLlib

    SPARK-22156:当numIterations设置为大于1时,Word2Vec的学习速率更新不正确。这将导致2.3和早期版本之间的训练结果不同。...分布式矩阵具有长类型的行和列索引和双类型值,分布式存储在一个或多个RDD中。选择正确的格式来存储大型和分布式矩阵是非常重要的。将分布式矩阵转换为不同的格式可能需要全局shuffle,这是相当昂贵的。...我们假设RowMatrix的列数不是很大,因此单个本地向量可以合理地传递给驱动程序,也可以使用单个节点进行存储/操作。...2.5.2 Dataset ◆ 与RDD分行存储,没有列的概念不同,Dataset 引入了列的概念,这一点类似于一个CSV文件结构。...类似于一个简单的2维表 2.5.3 DataFrame DataFrame结构与Dataset 是类似的,都引|入了列的概念 与Dataset不同的是,DataFrame中的毎一-行被再次封装刃

    2.8K20

    基于Spark的机器学习实践 (二) - 初识MLlib

    SPARK-22156:当numIterations设置为大于1时,Word2Vec的学习速率更新不正确。这将导致2.3和早期版本之间的训练结果不同。...分布式矩阵具有长类型的行和列索引和双类型值,分布式存储在一个或多个RDD中。选择正确的格式来存储大型和分布式矩阵是非常重要的。将分布式矩阵转换为不同的格式可能需要全局shuffle,这是相当昂贵的。...我们假设RowMatrix的列数不是很大,因此单个本地向量可以合理地传递给驱动程序,也可以使用单个节点进行存储/操作。...[1240] 2.5.2 Dataset ◆ 与RDD分行存储,没有列的概念不同,Dataset 引入了列的概念,这一点类似于一个CSV文件结构。...类似于一个简单的2维表 [1240] 2.5.3 DataFrame DataFrame结构与Dataset 是类似的,都引|入了列的概念 与Dataset不同的是,DataFrame中的毎一-行被再次封装刃

    3.5K40

    基于SparkSQL实现的一套即席查询服务

    README-EN 基于SparkSQL实现了一套即席查询服务,具有如下特性: 优雅的交互方式,支持多种datasource/sink,多数据源混算 spark常驻服务,基于zookeeper的引擎自动发现...负载均衡,多个引擎随机执行 多session模式实现并行查询 采用spark的FAIR调度,避免资源被大任务独占 基于spark的动态资源分配,在无任务的情况下不会占用executor资源 支持Cluster...的关联 对数据源操作的权限验证 支持的数据源:hdfs、hive、hbase、kafka、mysql、es、mongo 支持的文件格式:parquet、csv、orc、json、text、xml 在Structured...Streaming支持的Sink之外还增加了对Hbase、MySQL、es的支持 Quickstart HBase 加载数据 load hbase.t_mbl_user_version_info where...对应的数据 无 可获取指定rowkey集合对应的数据,spark.rowkey.view.name 即是rowkey集合对应的tempview,默认获取第一列为rowkey列 保存数据 save

    2K10
    领券