VisualVM是我们平时最常用的Java应用监控和性能分析工具,功能很丰富。我们有时会利用它来监控Spark作业,主要是Driver和Executor的运行情况。...*.sink.jmx.class=org.apache.spark.metrics.sink.JmxSink master.source.jvm.class=org.apache.spark.metrics.source.JvmSource...worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource...executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource 2 修改$SPARK_HOME/conf目录下的spark-defaults.conf...spark.metrics.conf=/opt/cloudera/parcels/SPARK2/lib/spark2/conf/metrics.properties spark.driver.extraJavaOptions
创建web场景: 配置场景: 添加步骤: 查看最新数据:
> 本地测试 --> 性能调优 --> Troubshoting --> 数据倾斜解决 3、常规性能调优: 3.1、分配更多资源 性能和速度的提升在一定范围内和运算资源成正比 (1)分配哪些资源...3.5、使用Kryo序列化 (1)Spark内部默认使用java序列化机制,好处在于处理简单,但是效率不高,并且会占用更多空间、速度慢,Spark默认支持Kryo序列化,性能更好。 ...作业频繁停止工作 ②老年代囤积大量短生命周期对象,导致频繁fullGC,Spark作业长时间停止工作 ③严重影响Spark作业的性能和运行速度 (2)Spark作业运行过程中...=2048 针对基于yarn的提交模式 在spark的启动指令中添加参数,默认情况下堆外内存大小为三百多MB,可调节为1G\2G\4G…,可以避免某些JVM OOM问题,同时让Spark作业有较大性能提升...①map task 减少,磁盘IO减少; ②网络传输性能消耗减少; 5.2、调节Spark Shuffle ShuffleMapTask阶段内存缓冲大小和ShuffleReduceTask
明确性能瓶颈在优化之前,需要明确监控工具对系统性能的影响来源:CPU 占用:监控工具是否消耗过多 CPU 资源。内存占用:监控工具是否占用过多内存。磁盘 I/O:监控工具是否频繁读写磁盘。...示例性能分析工具:工具分析内容top实时查看 CPU 和内存使用情况iotop查看磁盘 I/O 使用情况iftop查看网络带宽使用情况sar收集和分析系统性能历史数据2....优化监控工具配置通过调整监控工具的配置参数,降低其对系统性能的影响。(1)Prometheus减少采集频率:降低 scrape_interval 的值。限制目标数量:仅监控关键服务。...定期测试和优化通过模拟高负载场景测试监控工具的性能,并根据结果优化配置。(1)模拟高负载使用工具(如 stress-ng)模拟高负载,观察监控工具的表现。.../bin/bash # 测试监控工具性能test_monitoring_performance() { echo "开始测试监控工具性能..."
目前主要从事Spark大数据平台与机器学习平台相关方向的工作,关注Spark与TensorFlow 测试准备 训练数据是通过 Facebook SNS 公开数据集生成器得到,在HDFS上大小为9.3G...除以上配置外,其他配置全部保持Spark默认状态。...的性能受多方面因素的影响,单单Cache这块不同的Cache方式以及不同的资源情况下,其性能差别就相差较大,下面分析其内在原因。...剔除重建,同时由于内存吃紧,可能引发较重的GC,从UI上看到GC时间占到总的task运行时间的12%左右,已经成为瓶颈,其整体性能还不如不使用Cache; 当executor_memory为4g时,也不足以...交叉验证测试 为了排除偶然性,拿 BigDataBenchmark 中的 PageRank 算法进行测试,分别测试各种Cache方式下整体性能,在保证每种Cache方式下都能100%Cache住数据的情况下
Spark的性能,想要它快,就得充分利用好系统资源,尤其是内存和CPU:核心思想就是能用内存cache就别spill落磁盘,CPU 能并行就别串行,数据能local就别shuffle。...在Spark中由SparkContext负责和ClusterManager/ResourceManager通信,进行资源的申请、任务的分配和监控等;当Executor部分运行完毕后,Driver负责将SparkContext...上的执行的内容,task之间无状态传递,可以并行执行 运行流程 client向YARN的ResourceManager/RM申请启动ApplicationMaster/AM(单个应用程序/作业的资源管理和任务监控...所以用户在编写Spark应用程序的过程中应当尽可能避免shuffle算子和考虑shuffle相关的优化,提升spark应用程序的性能。...没有那么明显的性能提升了) ?
示例:点击 -> 性能监控 先上效果: monitor1.png 内存监控: /proc/meminfo used=total-(buffers+cached+free) [root@wangzi...{1},{2},{3},'{4}')""".format(used,free,cached,buffers,now_zero) cursorUpdate(insert_sql,[]) 网卡IO监控...'{4}')""".format(net_in,net_out,add_net_in,add_net_out,now_zero) cursorUpdate(insert_sql,[]) CPU监控...python监控: #!...: 固定时间段监控/proc/vmstat 以下字段 和前一个时间段相减,再除以时间间隔 得到io。
内存监控: /proc/meminfo used=total-(buffers+cached+free) [root@wangzi go]# cat /proc/meminfo MemTotal:...,{2},{3},'{4}')""".format(used,free,cached,buffers,now_zero) cursorUpdate(insert_sql,[]) TCP连接监控...python监控: #!...{2},'{3}')""".format(established,time_wait,close_wait,now_zero) cursorUpdate(insert_sql,[]) 网卡IO监控...: 固定时间段监控/proc/vmstat 以下字段 和前一个时间段相减,再除以时间间隔 得到io。
当我们谈及前端性能的时候,我们究竟想聊什么? 最近在做前端性能监控的一些事,这篇文章算是前端性能方面的基础知识梳理。...以往说到性能优化大家会认为是网页加载速度的快与慢,其实性能的好与坏也可以约等于用户使用的效率,同样的下面这些: 页面滚动是否平滑 点击按钮后响应是否够快 动画是否流畅, 关键内容是否优先被加载(参考 YouTube...) webview 启动时间是否够短 更低的资源消耗( cpu 、电量等等) 也都可以是衡量一个网页性能的指标,当然还会有更多。...如何监控? Synthetic Monitoring:合成监控 合成监控是指在模拟环境中的监控,通常我们自己使用 Lighthouse 去跑一个页面,生成的性能报告就可以认为是合成监控。...优点: 实现简单 采集到的数据维度更高,包括硬件的 对用户无影响 能够生成丰富的图标信息,瀑布图 缺点: 无法还原现实场景 样本数据无法代表现实情况 Real User Monitoring:真实用户监控
任务的监控和使用 有几种方式监控spark应用:Web UI,指标和外部方法 Web接口 每个SparkContext都会启动一个web UI,默认是4040端口,用来展示一些信息: 一系列调度的...比如,下面就把日志输出到hdfs://namenode/shared/spark-logs,client需要增加配置: spark.eventLog.enabled true spark.eventLog.dir...说明 spark.history.provider org.apache.spark.deploy.history.FsHistoryProvider history背后的实现类,目前spark就提供这一种...applications/[app-id]/executors excutors信息 /applications/[app-id]/streaming/statistics streaming信息 其他工具 其他相关的性能调优的工具...: 集群监控,可以使用Ganglia 操作系统监控,可以用dstat, iostat, iotop JVM可以用jstack, jstat, jconsole
批处理间隔是 Spark Streaming 的核心概念和关键参数,它决定了 Spark Streaming 提交作业的频率和数据处理的延迟,同时也影响着数据处理的吞吐量和性能。...三、Spark Streaming监控 同Spark一样,Spark Streaming也提供了Jobs、Stages、Storage、Enviorment、Executors以及Streaming的监控...,其中Streaming监控页的内容如下图: 上图是Spark UI中提供一些数据监控,包括实时输入数据、Scheduling Delay、处理时间以及总延迟的相关监控数据的趋势展现。...如若Spark UI无法满足你所需的监控需要,用户可以定制个性化监控信息。...也正是这种方式,能够较好地集成Spark 其他计算模块,包括MLlib(机器学习)、Graphx以及Spark SQL。这给实时计算带来很大的便利,与此带来便利的同时,也牺牲作为流式的实时性等性能。
但是IO读写的操作非常零散,而且很多第三方框架内都会有写入操作,所以就变得非常难以监控和修改,有没有一种非常简单的方式可以帮助我们去定位这个问题呢?...而IO监控则是其中的开发测试阶段工具。...简单的介绍下动态Hook,我们可以通过Art虚拟机的机制,在一个方法调用的前后进行钩子操作,然后进行我们所需要的一些动态的监控的操作,已达到我们对于代码的动态监控能力。...IOCanary监控 监控IO是不是意味着只需要有方法能监控到文件的写入读取流就可以了呢?我们先简单的看下腾讯的Matrix的IOCanary是如何实现的。 ?...因为代码的调用顺序其实是会被收集在线程内部的,而这个构造则是在我们IO监控的Open方法内被执行的。
背景 在spark程序中,task有失败重试机制(根据 spark.task.maxFailures 配置,默认是4次),当task执行失败时,并不会直接导致整个应用程序down掉,只有在重试了 spark.task.maxFailures...另外,spark on yarn模式还会受yarn的重试机制去重启这个spark程序,根据 yarn.resourcemanager.am.max-attempts 配置(默认是2次)。...即使spark程序task失败4次后,受yarn控制重启后在第4次执行成功了,一切都好像没有发生,我们只有通过spark的监控UI去看是否有失败的task,若有还得去查找看是哪个task由于什么原因失败了...基于以上原因,我们需要做个task失败的监控,只要失败就带上错误原因通知我们,及时发现问题,促使我们的程序更加健壮。...任务监控", errorMessage.get) try { MailUtil.sendMail(args) } catch {
下面这些关于 Spark 的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的。...基本概念和原则 首先,要搞清楚 Spark 的几个基本概念和原则,否则系统的性能调优无从谈起: 每一台 host 上面可以并行 N 个 worker,每一个 worker 下面可以并行 M 个 executor...下面给这样一个直观的例子,当前总的 cpu 利用率并不高: 但是经过根据上述原则的的调整之后,可以显著发现 cpu 总利用率增加了: 其次,涉及性能调优我们经常要改配置,在 Spark 里面有三种常见的配置方式...可是当我们真正拿 r3.8 来做测试的时候,却发现这个估算不正确,原来 c3.8 和 r3.8 的性能不一样,不仅仅是内存差别,在 Spark job 内存占用远不到上限的情况下,我们发现 r3.8 xlarge...性能调优文档,How-to: Tune Your Apache Spark Jobs part-1 & part-2,Spark on Yarn: Where Have All the Memory
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的。 ?...基本概念和原则 首先,要搞清楚Spark的几个基本概念和原则,否则系统的性能调优无从谈起: 每一台host上面可以并行N个worker,每一个worker下面可以并行M个executor,task们会被分配到...其次,涉及性能调优我们经常要改配置,在Spark里面有三种常见的配置方式,虽然有些参数的配置是可以互相替代,但是作为最佳实践,还是需要遵循不同的情形下使用不同的配置: 设置环境变量,这种方式主要用于和环境...可是当我们真正拿r3.8来做测试的时候,却发现这个估算不正确,原来c3.8和r3.8的性能不一样,不仅仅是内存差别,在Spark job内存占用远不到上限的情况下,我们发现r3.8 xlarge要比c3.8...xlarge性能好40%。
1、SPARK-SQL优化三剑客:1内存2并发3CPU1、内存: spark的dirver和executor内存及对应spark作业参数涉及内存调优就三个参数:spark.driver.memory ,...-executor-memory 和 spark.yarn.executor.memoryOverhead2、并发:在 Spark 应用程序中,尽量避免不必要的 Shuffle 操作。...这样可以减少数据的传输和磁盘读写,提高并发性能及 SQL脚本涉及并发优化就1个参数:spark.sql.shuffle.partitions3、CPU:spark的executor的CPU核数和对应spark...这个是需要注意关联条件2、广播join,将右边的小表缓存到内存中,避免shuffle的情况4、Spark,lateral view explode。
Spark程序可以快如闪电⚡️,也可以慢如蜗牛?。 它的性能取决于用户使用它的方式。 一般来说,如果有可能,用户应当尽可能多地使用SparkSQL以取得更好的性能。...主要原因是SparkSQL是一种声明式编程风格,背后的计算引擎会自动做大量的性能优化工作。 基于RDD的Spark的性能调优属于坑非常深的领域,并且很容易踩到。...我们将介绍Spark调优原理,Spark任务监控,以及Spark调优案例。...本文参考了以下文章: 《Spark性能优化指南——基础篇》:https://tech.meituan.com/2016/04/29/spark-tuning-basic.html 《Spark性能优化指南...二,Spark任务UI监控 Spark任务启动后,可以在浏览器中输入 http://localhost:4040/ 进入到spark web UI 监控界面。
最优资源配置 Spark 性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。...资源调节后的性能提升 image.png 生产环境Spark submit脚本配置 /usr/local/spark/bin/spark-submit \ --class com.buwenbuhuo.spark.WordCount...合理的设置并行度,可以提升整个 Spark 作业的性能和运行速度。 Spark官方推荐,task数量应该设置为Spark作业总CPU core数量的2~3倍。...GC,GC会导致工作线程停止,进而导致Spark暂停工作一段时间,严重影响Spark性能。...这样就能够改善Spark作业的整体性能。
20230111_性能测试-mongostat监控mongoDB性能并生成图表 MongoDB Database Tools安装 MongoDB4.4之后不再自带mongostat命令,需要手动安装下载....add_yaxis("delete", query) .set_global_opts(title_opts=opts.TitleOpts(title="Mongo增删改查监控图...add_yaxis("flushes", flushes) .set_global_opts(title_opts=opts.TitleOpts(title="Mongo flushes监控图...", subtitle="此曲线图反映了Mongo缓存数据的频率, 长期为1则可能存在性能问题")) ) bar3 = ( Bar(init_opts=opts.InitOpts...", subtitle="此曲线图反映了Mongo执行读写操作和等待读写操作的客户端数量, 一直在累计增大则可能存在性能问题")) ) bar4 = ( Bar(init_opts
为什么要搭建性能监控平台?...1.1 需求背景在用 Jmeter 获取性能测试结果的时候, Jmeter 本身带有聚合报告如下图所示:图片这个报告有几个很明显的缺点:只能自己看,无法实时共享;报告信息的展示比较简陋单一,不直观;1.2...2、性能监控平台部署实践2.1 Docker环境本文的重点并不是介绍 Docker,所以不了解的小伙伴需要自己去学习一下基本的安装和操作。...使用 Docker + JMeter + InfluxDB + Grafana 到底可以搭建怎样的性能监控平台呢?相比较 JMeter 自带的监控平台,我们搭建的性能监控平台究竟有什么优势呢?
领取专属 10元无门槛券
手把手带您无忧上云