但是这篇论文LLM2Vec,可以将任何的LLM转换为文本嵌入模型,这样我们就可以直接使用现有的大语言模型的信息进行RAG了。...嵌入模型和生成模型 嵌入模型主要用于将文本数据转换为数值形式的向量表示,这些向量能够捕捉单词、短语或整个文档的语义信息。...在论文中对encoder-only和decoder-only模型的特点进行了讨论,特别是在解释为什么将decoder-only的大型语言模型(LLM)转换为有效的文本编码器时。...LLM2Vec 在论文中提出了一种名为LLM2Vec的方法,用于将仅解码器的大型语言模型(LLM)转换为强大的文本编码器。...利用LLM2Vec将Llama 3转化为文本嵌入模型 首先我们安装依赖 pip install llm2vec pip install flash-attn --no-build-isolation
(11):tf.keras建模三部曲 模型训练好之后,我们就要想办法将其持久化保存下来,不然关机或者程序退出后模型就不复存在了。...save()方法可以将模型保存到一个指定文件中,保存的内容包括: 模型的结构 模型的权重参数 通过compile()方法配置的模型训练参数 优化器及其状态 model.save('mymodels/mnist.h5...需要使用模型时,通过keras.models.load_model()方法从文件中再次加载即可。...通过save()方法,也可以将模型保存为SavedModel 格式。...at 0x7f49c42b87d0> 注:本系列所有博客将持续更新并发布在github上,您可以通过github下载本系列所有文章笔记文件。
这个步骤虽然看起来比较复杂,但在TensorFlow2.0的高级API Keras中有个比较好用的图像处理的类ImageDataGenerator,它可以将本地图像文件自动转换为处理好的张量。...batch中对数据进行增强,扩充数据集大小,从而增强模型的泛化能力。...每一个子文件夹都会被认为是一个新的类。(类别的顺序将按照字母表顺序映射到标签值)。 class_mode: "categorical", "binary", "sparse"或None之一。...以上就是在TensorFlow2.0中利用Keras这个高级API来对分类任务中的数据进行预处理。另外如果您需要完成一个目标检测等任务,则需要自定义一个类来继承ImageDataGeneraton。...主要由两种比较好用的方法,第一种是TensorFlow2.0中特有的,即利用Keras高级API对数据进行预处理,第二种是利用Dataset类来处理数据,它和TensorFlow1.X版本基本一致。
引发这一变化的,是Keras。 在TensorFlow 2.0中,Keras API将成为TensorFlow中构建和训练模型的核心高级API。 ? 在TensorFlow启动项目将变得更简单。...背后的原因在于,Tensorflow是为从研究到生产的大规模模型而设计的,核心是性能。虽然难学,但只要坚持下去,就能进入机器学习从业者行列了。...很多新的AI研究人员,以及不少Tensorflow用户,都喊着“真香”,转投PyTorch,毕竟隔壁家的不需要花太多力气。 还好有Keras,让不少人感受到了一些安慰。...Keras,是一个用于逐层构建模型的框架,可以与多个机器学习框架一起工作,它从一开始就是Pythonic的,设计灵活,易于学习,吸引了不少人的使用和支持。...开发者得在好用的Keras和性能强大的TensorFlow之间做出选择。 这就很容易给人一种“PyTorch”真香的感觉。 在TensorFlow2.0中,解决了这个问题。
1 Keras概述 在TensorFlow2.0中,Keras是一个用于构建和训练深度学习模型的高阶 API。...这也就是使用过TensorFlow2.0版本的都在吐槽全世界都是Keras的原因。 ?...下面将介绍TensorFlow2.0中的激活函数及它们应该在TensorFlow2.0中该如何使用。下图是TensorFlow2.0中部分激活函数: ?...下面将介绍TensorFlow2.0中的优化器及他们应该在TensorFlow2.0中该如何使用。下图是TensorFlow2.0中所有的优化器,它们都是Optimizer的子类。 ?...Sequential 在TensorFlow2.0中,我们可以使用Sequential模型。
转自:机器之心编辑部 能够灵活地调用各种语言模型,一直是 NLP 研究者的期待。...Transformers 同时支持 PyTorch 和 TensorFlow2.0,用户可以将这些工具放在一起使用。...GLUE 任务上进行模型微调 如下为在 GLUE 任务进行微调,使模型可以用于序列分类的示例代码,使用的文件是 run_glue.py。...模型转换为 CoreML 模型放在移动端。...未来,他们会进一步推进开发工作,用户可以无缝地将大模型转换成 CoreML 模型,无需使用额外的程序脚本。
例如使用tf.add_to_collection 函数可以将资源加入一个或多个集合。使用tf.get_collection获取一个集合里面的所有资源。...如今TensorFlow 2.0正在摆脱tf.layers,重用Keras 层,可以说如果你使用TensorFlow2.0,那么使用Keras构建深度学习模型是你的不二选择。...当你学会了读取数据和数据增强后,你就需要学会如何使用TensorFlow2.0构建网络模型,在TensorFlow2.0中搭建网络模型主要使用的就是Keras高级API。...如果你想要学会这个本领,可以参考文后的第四篇文章《如何搭建网络模型》。 在这篇文章我们详细介绍了如何使用Keras API搭建线性模型VGG16和非线性模型Resnet。...如果你是AI小白,想要更好的掌握TensorFlow2.0,建议你使用TensorFlow2.0完成搭建VGG、GoogLeNet、Resnet等模型,这样对你掌握深度学习框架和网络结构更有帮助。
要把Keras框架训练生成的h5模型部署到OpenVINO上,有两条技术路线: 选择一: 把预训练权重文件h5转换pb文件,然后再转为OpenVINO可以解析的IR文件 选择二: 把预训练权重文件h5转为...很显然,第一条技术路线中间步骤比第二条要多,这个就意味着翻车的可能性更大,所以我选择把Keras转换为ONNX格式文件路线。...怎么从Keras的h5权重文件到ONNX格式文件,我还是很白痴的存在,但是我相信ONNX格式生态已经是很完善了,支持各种转ONNX格式,所以我搜索一波发现,github上有个很好用的工具Keras2ONNX...然后我从github上找了个Keras全卷积语义分割网络的源码库,下载了预训练模型,通过下面的几行代码完成了从h5权重模型文件到ONNX格式文件的转换 # Load model and weights...这里唯一需要注意的是,Keras转换为ONNX格式模型的输入数据格式是NHWC而不是OpenVINO预训练库中模型的常见的输入格式NCHW。运行结果如下 ?
TensorFlow 2.0 将重点放在简单和易用性上,它做了以下更新: 用 Keras 建立简单的模型并执行 在任何平台上的生产中进行强大的模型部署 强大的研究实验 通过清除不推荐使用的 API 和减少重复来简化...使用 tf.keras 构建、训练和验证您的模型,或者使用 Premade Estimators 来验证您的模型。...此外,tf.function 注释会将 python 程序转换为 TensorFlow 图。...此外,SavedModel 和 GraphDef 将向后兼容。用 1.x 版本保存的 SavedModel 格式的模型将继续在 2.x 版本中加载和执行。...您已经可以使用 tf.keras 和 Eager execution、预打包模型和部署库来开发 TensorFlow2.0 方法。今天,部分分发策略 API 也已经可用。
本篇文章将接着上篇文章继续介绍它的使用。查看上篇:一文上手最新TensorFlow2.0系列(二)。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。...考虑到Keras优秀的特性以及它的受欢迎程度,TensorFlow将Keras的代码吸收了进来,并将其作为高级API提供给用户使用。...HDF5文件 model.save('my_model') # 加载保存的模型 model = tf.keras.models.load_model('my_model') 通过“model.save(...# 将模型的权重参数保存为HDF5文件 model.save_weights('my_model.h5', save_format='h5') # 重新加载 model.load_weights('my_model.h5...') # 将模型的结构保存为JSON文件 json_string = model.to_json()
本文介绍基于Python的tensorflow库,将tensorflow与keras训练好的SavedModel格式神经网络模型转换为frozen graph格式,从而可以用OpenCV库在C++等其他语言中将其打开的方法...但是,由于训练模型时使用的是2.X版本的tensorflow库(且用的是keras的框架),所以训练模型后保存的是SavedModel格式的神经网络模型文件——就是包含3个.pb格式文件,以及assets...因此,如果希望基于OpenCV库读取tensorflow中SavedModel格式的模型,就需要首先将其转换为frozen graph格式;那么,本文就介绍一下这个操作的具体方法,并给出2种实现这一转换功能的...最后,就可以通过tf.io.write_graph()函数,将冻结图写入指定的目录中,输出文件名为frozen_graph.pb,as_text = False表示以二进制格式保存这个模型(如果不加这个参数...执行上述代码,在结果文件夹中,我们将看到1个.pb格式的神经网络模型结果文件,如下图所示。
查看上篇:一文上手Tensorflow2.0之tf.keras|三。在文末作者给出了答疑群的二维码,有疑问的读者可以进群提问。...) Tensorflow2.0 使用 “tf.data” API “tf.keras”API 使用GPU加速 安装配置GPU环境 使用Tensorflow-GPU 4 使用GPU加速 4.1 安装配置...图11 cuDNN下载列表 (2)安装 第一步:解压文件 使用“tar”命令解压文件: tar zxvf cudnn-10.0-linux-x64-v7.5.0.56.tgz 第二步:拷贝文件,并修改文件权限...(layers.Dense(1, activation='sigmoid')) # 设置目标函数和学习率 optimizer = tf.keras.optimizers.SGD(0.2) # 编译模型...我们可以将代码中的“0”改为“1”来使用另一个GPU。
背景 使用tensorflow2.0以上版本框架用Keras或者Estimator方式保存模型有两种方式加载模型并预测。...Keras框架保存模型后可以直接加载并调用predict方法预测; estimator将比较麻烦,需要签名并传入tensor才可以预测; Keras模型预测 import tensorflow as tf...from tensorflow import keras model = tf.keras.models.load_model(export_dir) # dataframe 特征读取与处理 X =...tf # 加载模型 & 签名 imported = tf.saved_model.load(export_dir) f = imported.signatures["predict"] # 转换为tensor...): examples = [] for row in dataframe.itertuples(): feature_map = {} # 特征处理 将特征放入
的安装(CPU和GPU) Tensorflow2.0 的使用 使用 GPU 加速 从现在开始我们就正式进入TensorFlow2.0的学习了,在这一系列文章里我们将重点介绍TensorFlow的基础知识和使用方法...“tf.data”和“tf.keras”这两个API,让读者快速入门TensorFlow2.0的使用。...使用tf.keras或PremadeEstimators构建、训练和验证模型 tf.keras作为TensorFlow的核心高级API,其已经和TensorFlow的其余部分紧密集成,使用tf.keras...我们可以使用tf.function来将python程序转换为TensorFlow的静态计算图,这样就可以保留TensorFlow1.x版本中的静态计算图的一些优势。 4....使用SavedModel存储模型 在TensorFlow中有两种模型存储的格式,一个是检查点(checkpoints),另一个是SavedModel,前者依赖于创建模型的源代码,而后者则与创建模型的源代码无关
official github:https://arxiv.org/pdf/2302.13971v1.pdf 论文:https://arxiv.org/pdf/2302.13971v1.pdf 文章转自微信公众号...上面下载到本地的模型权重是这个样子的: 是吧一个权重分解成了多个权重包,那么hugging face在加载模型参数的时候,会根据其中的“pytorch_model.bin.index.json”文件当中进行加载...| 21 Keras的API详解(下)池化、Normalization层 扩展之Tensorflow2.0 | 21 Keras的API详解(上)卷积、激活、初始化、正则 扩展之Tensorflow2.0...| 20 TF2的eager模式与求导 扩展之Tensorflow2.0 | 19 TF2模型的存储与载入 扩展之Tensorflow2.0 | 18 TF2构建自定义模型 扩展之Tensorflow2.0...| 17 TFrec文件的创建与读取 扩展之Tensorflow2.0 | 16 TF2读取图片的方法 扩展之Tensorflow2.0 | 15 TF2实现一个简单的服装分类任务 小白学PyTorch
视频:TensorFlow2.0正式版发布。 使用 TensorFlow 2.0 进行模型构建 TensorFlow 2.0 使得 ML 应用的开发更加方便。...tf.function 装饰器可用于将代码转化为图,从而可以实现远程执行、序列化和性能优化。...这得益于 Autograph 的补充,它可以将常规的 Python 控制流直接转化为 TensorFlow 控制流。...例如,TensorFlow2.0 帮助谷歌新闻部门部署了一个 BERT 模型,显著减少了内存占用。...CPU 版本为: pip install tensorflow GPU 版本为: pip install tensorflow-gpu 示例代码 因为使用 Keras 高级 API,TensorFlow2.0
在这个专栏中,我们会讲述Python的各种进阶操作,包括Python对文件、数据的处理,Python各种好用的库如NumPy、Scipy、Matplotlib、Pandas的使用等等。...今天是《Python进阶》专栏的第三期,在本期中,我们将主要介绍Numpy的一些进阶知识。 作者&编辑 | 汤兴旺 如果你想掌握Python,那么NumPy是你必须要精通的。...往期精选 【Python进阶】Python进阶专栏、编程与开源框架知识星球上线,等你来follow 【Python进阶】实战Python图像文件操作基本编程 【杂谈】菜鸟误入linux会有哪些惨痛的经历...【TensorFlow2.0】TensorFlow2.0专栏上线,你来吗?...【TensorFlow2.0】以后我们再也离不开Keras了? 【TensorFlow2.0】数据读取与使用方式 【TensorFlow2.0】如何搭建网络模型
本篇文章将接着上篇文章继续介绍它的安装及部分使用。查看上篇:文末福利|一文上手TensorFlow2.0(一)。...GPU) Tensorflow2.0 使用 “tf.data” API “tf.keras”API 使用GPU加速 安装配置GPU环境 使用Tensorflow-GPU 2....图13 在notebook文件中编写代码 3 TensorFlow2.0使用 3.1 “tf.data”API 除了GPU和TPU等硬件加速设备以外,一个高效的数据输入管道也可以很大程度的提升模型性能...该数据集是一个花朵图片的数据集,将下载下来的数据解压后如图2-15所示,除了一个License文件以外主要是五个分别存放着对应类别花朵图片的文件夹。...,这个例子的目的是让读者了解如何使用我们创建的dataset,为了简单,我们直接使用“tf.keras.applications”包中训练好的模型,并将其迁移到我们的花朵分类任务上来。
Transformers 同时支持 PyTorch 和 TensorFlow2.0,用户可以将这些工具放在一起使用。...GLUE 任务上进行模型微调 如下为在 GLUE 任务进行微调,使模型可以用于序列分类的示例代码,使用的文件是 run_glue.py。 ...pip install transformers 移动端部署很快就到 HuggingFace 在 GitHub 上表示,他们有意将这些模型放到移动设备上,并提供了一个 repo 的代码,将 GPT-2...模型转换为 CoreML 模型放在移动端。 ...未来,他们会进一步推进开发工作,用户可以无缝地将大模型转换成 CoreML 模型,无需使用额外的程序脚本。
这是一篇对手册性质的文章,如果你刚好从事AI开发,可以参考这文章来进行模型转换。...Keras转TFLite需要三个过程, Keras 转 Tensorflow 固化 Tensorflow 网络到 PB(Protocol Buffer) PB 转 TFLite Keras 网络构成 Keras...model_checkpoint_path: "squeezenet_model.ckpt" all_model_checkpoint_paths: "squeezenet_model.ckpt" Keras...转 Tensorflow 转换过程需要先把网络结构和权重加载到model对象, 然后用 tf.train.Saver 来保存为 ckpt 文件。...,也就是节点结构 input_checkpoint: ckpt 文件,保存权重 output_graph: 输出PB文件的名称 output_node_names: 网络输出节点 input_binary
领取专属 10元无门槛券
手把手带您无忧上云