首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

tensorflow学习(keras)

keras是什么? keras是一个可用于快速构建和训练深度学习模型的API。...训练模型 简单模型的构建 通常是构建序列模型,也就是一个全连接的多层感知机: 代码如下:其中使用layers.Dense()函数设置每一层的相关配置,具体内容可参考官网 #实例化模型为model=tf.keras.Sequential...() model=tf.keras.Sequential() #添加第一层,激活函数是relu model.add(layers.Dense(64,activation='relu')) #添加第二层,...损失函数由名称或通过从 tf.keras.losses 模块传递可调用对象来指定。 metrics:用于监控训练。它们是 tf.keras.metrics 模块中的字符串名称或可调用对象。...='relu')(x) # 构造输出层 predic=layers.Dense(10,activation='softmax')(x) #实例化模型 model=tf.keras.Model

60340
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    理解keras中的sequential模型

    如下代码向模型添加一个带有64个大小为3 * 3的过滤器的卷积层: from keras.models import Sequential from keras.layers import Dense,...Activation,Conv2D,MaxPooling2D,Flatten,Dropoutmodel = Sequential() model.add(Conv2D(64, (3, 3), activation...='relu')) Sequential模型的核心操作是添加layers(图层),以下展示如何将一些最流行的图层添加到模型中: 卷积层 model.add(Conv2D(64, (3, 3), activation...中使用Sequential模型的基本构建块,相对于tensorflow,keras的代码更少,接口更加清晰,更重要的是,keras的后端框架切(比如从tensorflow切换到Theano)换后,我们的代码不需要做任何修改...使用Sequential模型解决线性回归问题 谈到tensorflow、keras之类的框架,我们的第一反应通常是深度学习,其实大部分的问题并不需要深度学习,特别是在数据规模较小的情况下,一些机器学习算法就可以解决问题

    3.6K50

    深度学习-卷积神经网络

    深度学习-手写数字识别(卷积神经网络) 概述 * 数据来源手写数据(kersa) * 方法:卷积神经网络 * 评估准确率 代码 # 构建卷积层 from keras import layers from...keras import models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu...', input_shape=(28, 28, 1))) # 这里的Conv2D对输入数据进行卷积,输出的为3D的张量 model.add(layers.MaxPooling2D((2, 2))) #...model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) Using TensorFlow...卷积网络和神经网络的区别就在于卷积的过程,第一个卷积层接收一个大小为(28, 28, 1) 的特征图,通过计算32(3*3)个过滤器,输出(26, 26, 32) 的特征图 MaxPooling2D

    40010

    【Keras篇】---Keras初始,两种模型构造方法,利用keras实现手写数字体识别

    一、前述 Keras 适合快速体验 ,keras的设计是把大量内部运算都隐藏了,用户始终可以用theano或tensorflow的语句来写扩展功能并和keras结合使用。...import Conv2D from keras.layers.convolutional import MaxPooling2D #Conv2D 图片是3通道 Conv1D 单声道或者双声道...np.array([tran_y(y_test[i]) for i in range(len(y_test))]) # 搭建卷积神经网络 model = Sequential() # 添加一层卷积层,构造64个过滤器...(卷积核),每个过滤器(卷积核)覆盖范围是3*3*1 # 过滤器步长为1,图像四周补一圈0,并用relu进行非线性变化 model.add(Conv2D(filters=64, kernel_size=...这里是2*2 池化默认一般不做padding # 设立Dropout层,Dropout的概率为0.5 model.add(Dropout(0.5)) # 重复构造,搭建深度网络 model.add(Conv2D

    1.1K20

    基于MNIST手写体数字识别--含可直接使用代码【Python+Tensorflow+CNN+Keras】

    基于MNIST手写体数字识别--【Python+Tensorflow+CNN+Keras】 1.任务 2.数据集分析 2.1 数据集总体分析 2.2 单个图片样本可视化 3. 数据处理 4....库的mnist.py文件中的load_data方法加载数据 代码 import tensorflow as tf mnist=tf.keras.datasets.mnist #导入mnist数据集,确保网络畅通...序贯模型是线性、从头到尾的结构顺序, 不分叉,是多个网络层的线性堆叠 model = models.Sequential() # # 向模型中添加层 # 【Conv2D】 # 构建卷积层。...总代码 from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import models...序贯模型是线性、从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠 model = models.Sequential() # # 向模型中添加层 # 【Conv2D】 # 构建卷积层。

    5.3K30

    视觉进阶 | 用于图像降噪的卷积自编码器

    这篇文章将用上Keras模块和MNIST数据。Keras用Python编写,并且能够在TensorFlow上运行,是高级的神经网络API。 了解图像数据 如图(A)所示,图像由“像素”组成。...图 (G) 过滤器越多,模型可以提取的特征就越多。但是,特征越多,训练时间也就越长。因此,最好还是选择最少的过滤器提取特征。 1.1填充 特征如何确定匹配项?...当步长为1时,过滤器一次移动1个像素。在Keras代码中,我们将其视为超参数。 2.线性整流步骤 线性整流单位(ReLU)的步骤与典型的神经网络相同。它将所有的负值校正为零,确保数学运算正确。...from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model...((2, 2))(x) decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) 该Keras API需要模型和优化方法的声明

    74110
    领券