For循环与向量化(Vectorization) 写在前面 感谢水友们积极的提问,大猫和村长在此再次表示衷心的感谢。...关于For循环和Vectorization的深入思考 Vectorization在更多包的拓展 现在有很多的R包会对底层的一些函数进行优化,也即是对向量化的进一步优化,我们选择效率较为强大的data.table...更底层的For循环 R语言本身的For循环效率相对低下,究其原因在于R作为高级语言,循环本身需要先进行编译,再放入底层进行处理。更为直接的做法,如果想提升效率,则可以直接将循环放入底层进行运行。...通过运行结果可以发现,Rcpp调用的底层循环略优于data.table的向量化,运行时间在0.03s左右。...总结 通过上面的运行效率排序可以发现: 我们也可以总结出以下两点: 在R语言中一般意义上的数据操作,能够向量化尽量进行向量化,For循环尽量避免使用。
上一篇我介绍了如何使用Scope来管理Tensorflow中的变量和张量。这一篇我会说一说三种向Tensorflow提供数据的方式。 Tensorflow可以有效处理大量数据。...所以要给Tensorflow模型足够多的数据,以最大化其性能。可以通过多种方式将数据提供给Tensorflow。 1、将数据作为常量提供给Tensorflow ?...2、使用占位符将数据提供给Tensorflow ? 使用占位符可以解决了第一种方法的所有问题,占位符运算符返回一个张量,其值通过Session.run函数中的feed_dict参数获取。...3、使用Python操作将数据提供给TensorFlow ? Python操作符允许您将常规的Python函数转换为TensorFlow操作。
随着再度升级的AlphaGo战胜了柯洁大魔王,最近很多金融媒体又在热烈的讨论将人工智能运用到量化投资领域,小密圈和QQ群里也有很多朋友对此很好奇。...我看到了这个网站: http://playground.tensorflow.org, 如下图所示: ? 这个网站是谷歌开源的深度学习框架 TensorFlow 的一个示例网站。...在6月8日的时候,我做了一次直播《浅谈机器学习和量化投资》,主要聊了以下内容: 机器学习可以做什么? 机器学习如何解决量化投资问题?
本文作为“学习小组”的第一篇入门向的输出内容,主要讲一下机器学习以及深度学习的概念,并引出sklearn和tensorflow这两个在领域中举足轻重的学习库对其进行简单的科普介绍。...TensorFlow是目前深度神经网络中最好用的库之一。我们可以通过使用TensorFlow来快速的入门神经网络, 大大降低了深度学习的开发成本和开发难度。...我们可以通过命名来理解:tensor,翻译为“张量”,表示N维向量;flow,表示流,是指一个有向无环图。tensorflow的运行过程就是张量从图的一端流动到另一端的过程。...数据流图用“节点”(nodes)和“线”(edges)的有向图来描述数学计算。...使用Tensorflow需要: 向tf中输入搭建模型所需要的信息,并将其转化为可处理的数据。 通过tf内置的函数模块搭建模型 循环地迭代训练以及评估模型,以便确定模型中的参数。
所有编程语言都离不开循环。因此,默认情况下,只要有重复操作,我们就会开始执行循环。但是当我们处理大量迭代(数百万/十亿行)时,使用循环是一种犯罪。您可能会被困几个小时,后来才意识到它行不通。...在后台,它将操作一次性应用于数组或系列的所有元素(不同于一次操作一行的“for”循环)。 接下来我们使用一些用例来演示什么是矢量化。...数学运算 在数据科学中,在使用 Pandas DataFrame 时,开发人员使用循环通过数学运算创建新的派生列。 在下面的示例中,我们可以看到对于此类用例,用矢量化替换循环是多么容易。...在 Python 中运行循环来求解这些方程式非常慢,矢量化是最佳解决方案。 例如,计算以下多元线性回归方程中数百万行的 y 值: 我们可以用矢量化代替循环。...与 Python 中的循环相比,它快 165 倍。 结论 python 中的矢量化速度非常快,无论何时我们处理非常大的数据集,都应该优先于循环。
近期笔者和另一开发者wsr在MOKIT程序中加入了fchk(),py2molpro,py2molcas,py2qchem等模块,可用于从PySCF程序向其他量子化学程序传递分子轨道。...(为什么不用Gaussian算完了传轨道给其他程序:因为Gaussian是商业收费程序,有的课题组/机构没买) (3)自己基于PySCF开发新方法,无现有程序对应,但希望正确地传轨道至下一个量化程序进行后续计算...注意Windows预编译版不支持本文功能,内含的是Gaussian与其他量化程序传轨道的小程序。
图1 Relu函数模型 解决方案 1.导入tensorflow为tf、获取数据集 import tensorflow as tf from tensorflow import...keras from tensorflow.keras import datasets (x,y),_ = datasets.mnist.load_data() 2.创建tensor 把...tf.Variable(tf.random.truncated_normal([128,10],stddev=0.1)) b3 = tf.Variable(tf.zeros([10])) lr=1e-3 5.循环数据集...把训练过程放在withtf.GradientTape()astape中,之后可以用tape.gradient()自动求得梯度,用forstep分批循环数据集,再对整个数据集进行十次循环。...or epoch in range(10): # iterate db for 10 # 分批循环数据集 for step,(x,y) in enumerate(train_db
本文介绍如何使用MOKIT从ORCA向其他量化程序传轨道,有以下可能的用途: (1)在ORCA中进行了RIJK或RIJCOSX加速的大体系HF/DFT计算,想传轨道给其他程序进行后续计算,或想产生fch...若读者在计算中使用全电子基组,自然无此问题;若用了赝势,按上文操作产生其他量化程序的文件不会含赝势信息,即使轨道系数正确,SCF也会剧烈振荡。这里笔者推荐一种解决办法: Step 1....以防覆盖 mkl2fch ZnMe2_o.mkl # 将轨道传回ZnMe2_o.fch 后续可以使用fch2inp,fch2inporb,fch2com,bas_fch2py等小程序传给其他量化程序做计算
遇到的问题是,在向 ActiveMQ 发送消息的时候,我们有一个 SendMQ 的方法。在这个方法将会打开连接发送消息后关闭连接。我们的问题在:现在需要向 MQ 发送 1 万多条消息,这个循环放那里。...开始我们把这个循环放在了内层,这里就出现了一个问题,Python 的循环会异步调用 Close 这方法,然后导致整个程序的挂起。...通过上面 GPT 的回答,我知道应该在整个循环的最外层打开连接,循环内不能再次打开连接和关闭连接。等把这 1 万多条消息发送成功后再关闭连接。
---- 前面我们已经介绍了深度神经网络和卷积神经网络,这些算法都是前向反馈,模型的输出和模型本身没有关联关系。...今天我们学习输出和模型间有反馈的神经网络,循环神经网络(Recurrent Neual Networks),其广泛应用于自然语言处理中的语音识别,书写识别和机器翻译等领域。...循环神经网络有多种模型结构,这里我们介绍最主流的模型结构。上图中左边是没有按时间序列展开的图,右边是按照时间序列展开的结构,我们重点看右边的模型结构。...3.RNN前向传播算法 根据上面介绍的模型,我们来看一下RNN前向传播算法,对于任意时刻序列索引号t,能够得到当前的隐藏状态。其中σ为RNN的激活函数,一般是tanh,b为偏倚系数。 ?...上面总结了通用的RNN模型的前向传播算法和反向传播算法,当然RNN还有很多其他的模型,比如多层RNN、双向循环RNN(如上图所示),在前向和反向传播时公式自然也会不同,但基本原理类似,有兴趣可查询其他资料继续学习
Loop 指的就是这一整个圈圈: 它不停检查 Call Stack 中是否有任务(也叫栈帧)需要执行,如果没有,就检查 Event Queue,从中弹出一个任务,放入 Call Stack 中,如此往复循环
一:理论部分 embedding和变长输入处理 序列式问题 循环神经网络 LSTM模型原理 二:实战 keras实现embedding keras搭建循环神经网络 文本生成 文本分类 1.1embedding...as plt import numpy as np import sklearn import pandas as pd import os import sys import time import tensorflow...as tf from tensorflow import keras print(tf.
注:“混合”训练后量化 链接 https://www.tensorflow.org/lite/performance/post_training_quantization 我们已推出全新的训练后整型量化方法...注:量化感知训练 链接https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/quantize 总之,如果用户希望减少...同时,我们也鼓励您尝试使用训练后量化法,因为它也许能满足模型的所有需求! 文档和教程 您可以在 TensorFlow 网站上找到关于训练后整型量化、新量化规范以及训练后整型量化教程的详细信息。...训练后整型量化 (https://www.tensorflow.org/model_optimization/guide/quantization) 新量化规范 (https://www.tensorflow.org.../lite/performance/quantization_spec) 训练后整型量化教程 (https://github.com/tensorflow/tensorflow/blob/master/
读了将近一个下午的TensorFlow Recurrent Neural Network教程,翻看其在PTB上的实现,感觉晦涩难懂,因此参考了部分代码,自己写了一个简化版的Language Model...数据准备 TensorFlow的官方文档使用的是Mikolov准备好的PTB数据集。...ptb_raw_data()函数产生的数据 batch_size: 神经网络使用随机梯度下降,数据按多个批次输出,此为每个批次的数据量 num_steps: 每个句子的长度,相当于之前描述的n的大小,这在循环神经网络中又称为时序的长度...为了满足随机梯度下降的需要,我们还需要把数据整理成一个个小的批次,每次喂一个批次的数据给TensorFlow来更新权重,这样,数据就整理为[batch_len, batch_size, num_steps
Seq2Seq 最后一个问题是,将一个句子中每个词转为它的逆序字符串,也就是一个seq到seq的转换 正经的实现思路是,word 2 vector 2 lstm 2 vector 2 word 不过tensorflow...已经有了这样一个模型来做这件事情:Seq2SeqModel,关于这个模型可以看这个分析 以及tensorflow的example 只需要从batch中,根据字符串逆序的规律生成target sequence...参考链接 林洲汉-知乎 词向量 rudolfix - udacity_deeplearn Edwardbi - 解析Tensorflow官方English-Franch翻译器demo 觉得我的文章对您有帮助的话
5.1 循环神经网络(时间序列) 循环神经网络(RNN)用于建模带有时间关系的数据。它的架构是这样的。 ?...import tensorflow as tf import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot...循环层之后添加了一个输出层,目的是把循环层输出的四个特征压缩为一个特征,与标签匹配。...变量 含义 x 输入 y 真实标签 cell 循环层 w_l2 输出层的权重 b_l2 输出层的偏置 h_l1 循环层的输出 h_l2 模型的输出 x = tf.placeholder(tf.float64...扩展阅读 理解 LSTM 网络 机器学习实用指南:十四、循环神经网络 DeepLearningAI 笔记:序列模型
你不能简单的将数据丢进去,编写Python for循环,然后希望在合理的时间内处理数据。 Pandas是为一次性处理整个行或列的矢量化操作而设计的,循环遍历每个单元格、行或列并不是它的设计用途。...现在让我们建立一个标准线,用Python for循环来测量我们的速度。我们将通过循环遍历每一行来设置要在数据集上执行的计算,然后测量整个操作的速度。...我们编写了一个for循环,通过循环dataframe对每一行应用函数,然后测量循环的总时间。 在i7-8700k计算机上,循环运行5次平均需要0.01345秒。...在上一节中编写for循环时,我们使用了 range() 函数。然而,当我们在Python中对大范围的值进行循环时,生成器往往要快得多。...最后 前面我们提到过,如果你正在使用一个为向量化操作设计的库,你应该总是在没有for循环的情况下寻找一种方法来进行任何计算。
什么是GRU 在循环神经⽹络中的梯度计算⽅法中,我们发现,当时间步数较⼤或者时间步较小时,**循环神经⽹络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题。...**通常由于这个原因,循环神经⽹络在实际中较难捕捉时间序列中时间步距离较⼤的依赖关系。...其中,门控循环单元(gatedrecurrent unit,GRU)是⼀种常⽤的门控循环神经⽹络。 2....⻔控循环单元 2.1 重置门和更新门 GRU它引⼊了**重置⻔(reset gate)和更新⻔(update gate)**的概念,从而修改了循环神经⽹络中隐藏状态的计算⽅式。...这个设计可以应对循环神经⽹络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较⼤的依赖关系。
function batch(){ var dataArr = []; $('#line').each(function(){ ...
作者:刘建平 编辑:黄俊嘉 前 言 在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系...今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域。...也正因为是共享了,它体现了RNN的模型的“循环反馈”的思想。 03 RNN前向传播算法 有了上面的模型,RNN的前向传播算法就很容易得到了。...通过损失函数L(t),比如对数似然损失函数,我们可以量化模型在当前位置的损失,即y^(t)和y(t)的差距。...05 RNN小结 上面总结了通用的RNN模型和前向反向传播算法。当然,有些RNN模型会有些不同,自然前向反向传播的公式会有些不一样,但是原理基本类似。
领取专属 10元无门槛券
手把手带您无忧上云