首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Tensorflow加载预训练模型和保存模型

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。...在tensorflow 0.11之前,保存在**.ckpt**文件中。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...-of-00001 MyModel-1000.index MyModel-1000.meta 在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。

1.5K30

Tensorflow加载预训练模型和保存模型

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。...在tensorflow 0.11之前,保存在.ckpt文件中。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...-of-00001 MyModel-1000.index MyModel-1000.meta 在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。

3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在Android运行TensorFlow模型

    从代码可以看到,对于所有的operation对象都会有一个非空判断,因为这个op是和模型中训练时候生成的图对应的,获取实例的时候接口会去模型中查找这个节点,也就是这个op。...为什么是输入输出节点,因为训练模型生成的图是很大的,我用代码(我放在Tests目录下了)把ssd_mobilenet_v1_android_export.pb模型所有op打出来,发现一共有5000多个,...这里推荐一篇文章TensorFlow固定图的权重并储存为Protocol Buffers 讲的是Tensorflow保存的模型中都由哪些东西组成的。...最后再提一下label文件,因为label是和图像对应的,资源文件中也有记录着所有训练labels的文件,那么它用在哪? // Find the best detections....所以我是这么理解的:label数据在模型中就已经存在了,因为pb文件不仅存储了graph,还存储了训练过程的信息。labels文件对我们来说就是为了获得结果。

    2K10

    TensorFlow在推荐系统中的分布式训练优化实践

    模型复杂度:越来越复杂,模型单步计算时间增长10倍以上。 对于大流量业务,一次训练实验,从几个小时增长到了几天,而此场景一次实验保持在1天之内是基本的需求。...图2 自动化实验框架 2.2.2 业务视角的负载分析 在推荐系统场景中,我们使用了TensorFlow Parameter Server[3](简称PS)异步训练模式来支持业务分布式训练需求。...在美团内部的深度学习场景中,RDMA通信协议使用的是RoCE V2协议。目前在深度学习训练领域,尤其是在稠密模型训练场景(NLP、CV等),RDMA已经是大规模分布式训练的标配。...然而,在大规模稀疏模型的训练中,开源系统对于RDMA的支持非常有限,TensorFlow Verbs[4]通信模块已经很长时间没有更新了,通信效果也并不理想,我们基于此之上进行了很多的改进工作。...在TensorFlow PS架构中,包括Embedding向量在内的共享参数都存储在PS上,并通过网络与Worker交互,在进行Embedding查询过程中,往往会涉及如下两个环节: 由于稀疏参数的性质

    1.1K10

    用基于 TensorFlow 的强化学习在 Doom 中训练 Agent

    在众多各式各样缩写名词和学习模型中,我们始终还是很难找到最好的解决强化学习问题的方法。强化学习理论并不是最近才出现的。...有些深度学习的工具 ,比如 TensorFlow(https://www.tensorflow.org/ ) 在计算这些梯度的时候格外有用。...在我们的例子中,我们将会收集多种行为来训练它。我们将会把我们的环境训练数据初始化为空,然后逐步添加我们的训练数据。 ? 接下来我们定义一些训练我们的神经网络过程中将会用到的超参数。 ?...根据我们的初始权重初始化,我们的 Agent 最终应该以大约 200 个训练循环解决环境,平均奖励 1200。OpenAI 的解决这个环境的标准是在超过 100 次试验中能获取 1000 的奖励。...增强模型不考虑状态转换,操作值或 TD 错误,也可以用于处理信用分配的问题。要解决这些问题,需要多个神经网络和更多的智能训练数据。还有很多方式可以用来提高性能,比如调整超参数。

    1K50

    【TensorFlow】使用迁移学习训练自己的模型

    大家都知道TensorFlow有迁移学习模型,可以将别人训练好的模型用自己的模型上 即不修改bottleneck层之前的参数,只需要训练最后一层全连接层就可以了。...以下均在Windows下成功实现,mac用户只要修改最后脚本命令中的路径就可以 数据准备 先建立一个文件夹,就命名为tensorflow吧 首先将你的训练集分好类,将照片放在对应文件夹中,拿本例来说,你需要在...tensorflow文件夹中建立一个文件夹data然后在data文件夹中建立两个文件夹cat和dog然后分别将猫咪和狗狗的照片对应放进这两个夹中(注意每个文件夹中照片要大于20张) 然后建立一个空文件夹...bottleneck在tensorflow主文件夹下用于保存训练数据 再建立一个空文件夹summaries用于后面使用tensorboard就ok了 训练代码 # Copyright 2015 The...如果想测试一些其他图片,看看模型能不能成功识别可以继续往下看 模型预测 将下面代码粘贴到IDLE中并保存为image_pre.py在tensorflow文件夹中,其中你需要将里面三处的路径都修改为你的路径

    2.1K30

    使用TensorFlow训练图像分类模型的指南

    转载自:51CTO技术栈原文地址:使用TensorFlow训练图像分类模型的指南众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。...下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。...01  数据集和目标在本示例中,我们将使用MNIST数据集的从0到9的数字图像。其形态如下图所示:我们训练该模型的目的是为了将图像分类到其各自的标签下,即:它们在上图中各自对应的数字处。...在本例中,我将其保持为0.01。对于其他超参数,我将衰减步骤(decay steps)和衰减率(decay rate)分别选择为2000和0.9。而随着训练的进行,它们可以被用来降低学习率。...它将被用于在训练神经网络时,避免出现过拟合(overfitting)。毕竟,过度拟合模型倾向于准确地记住训练集,并且无法泛化那些不可见(unseen)的数据集。

    1.2K01

    Tensorflow加载预训练模型的特殊操作

    在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办? 最近看到一个巨牛的人工智能教程,分享一下给大家。...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...举个例子,例如,预训练的模型所有的参数有个前缀name_1,现在定义的网络结构中的参数以name_2作为前缀。...如果不知道预训练的ckpt中参数名称,可以使用如下代码打印: for name, shape in tf.train.list_variables(ckpt_path): print(name)

    2.3K271

    用 TensorFlow.js 在浏览器中训练神经网络

    什么是 TensorFlow.js TensorFlow.js 是一个开源库,不仅可以在浏览器中运行机器学习模型,还可以训练模型。具有 GPU 加速功能,并自动支持 WebGL。...可以导入已经训练好的模型,也可以在浏览器中重新训练现有的所有机器学习模型。运行 Tensorflow.js 只需要你的浏览器,而且在本地开发的代码与发送给用户的代码是相同的。...为什么要在浏览器中运行机器学习算法 隐私:用户端的机器学习,用来训练模型的数据还有模型的使用都在用户的设备上完成,这意味着不需要把数据传送或存储在服务器上。...分布式计算:每次用户使用系统时,他都是在自己的设备上运行机器学习算法,之后新的数据点将被推送到服务器来帮助改进模型,那么未来的用户就可以使用训练的更好的算法了,这样可以减少训练成本,并且持续训练模型。...head 中,从 CDN 引用 TensorFlow.js,这样就可以使用 API 了: https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.11.2 然后建立模型

    96520

    用 TensorFlow.js 在浏览器中训练神经网络

    什么是 TensorFlow.js TensorFlow.js 是一个开源库,不仅可以在浏览器中运行机器学习模型,还可以训练模型。...具有 GPU 加速功能,并自动支持 WebGL 可以导入已经训练好的模型,也可以在浏览器中重新训练现有的所有机器学习模型 运行 Tensorflow.js 只需要你的浏览器,而且在本地开发的代码与发送给用户的代码是相同的...为什么要在浏览器中运行机器学习算法 TensorFlow.js 可以为用户解锁巨大价值: 隐私:用户端的机器学习,用来训练模型的数据还有模型的使用都在用户的设备上完成,这意味着不需要把数据传送或存储在服务器上...分布式计算:每次用户使用系统时,他都是在自己的设备上运行机器学习算法,之后新的数据点将被推送到服务器来帮助改进模型,那么未来的用户就可以使用训练的更好的算法了,这样可以减少训练成本,并且持续训练模型。...head 中,从 CDN 引用 TensorFlow.js,这样就可以使用 API 了: https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.11.2 然后建立模型

    1.4K30

    在终端设备上实现语音识别:ARM开源了TensorFlow预训练模型

    △ 关键词识别pipeline 近日,ARM和斯坦福大学合作开源了预训练TensorFlow模型和它们的语音关键词识别代码,并将结果发表在论文Hello Edge: Keyword Spotting on...这个开源库包含了TensorFlow模型和在论文中用到的训练脚本。...在论文中,研究人员还展示了不同的神经网络架构,包含DNN、CNN、Basic LSTM、LSTM、GRU、CRNN和DS-CNN,并将这些架构加入到预训练模型中。...预训练模型地址: https://github.com/ARM-software/ML-KWS-for-MCU/tree/master/Pretrained_models 论文摘要 在研究中,研究人员评估了神经网络架构...他们训练了多种神经网络架构变体,并比较变体之间的准确性和存储/计算需求。 △ 神经网络模型的准确性 研究人员发现,在不损失精确度的情况下,在存储了计算资源受限的微控制器上优化这些神经网络架构可行。

    1.7K80

    tensorflow版PSENet 文本检测模型训练和测试

    网络结构: 文章使用在ImageNet数据集上预训练的Resnet+fpn作为特征提取的网络结构 ?...之后我们逐步判断和C相邻的像素是否在S2中,如果在,则将其合并到图b中,从而得到合并后的结果图c。S3同理,最终我们抽取图d中不同颜色标注的连通区域作为最后的文本行检测结果。...作者也分别将n和m取不同参数在icdar2015数据集上做了实验,如下图所示: ? 固定m=0.5,n从2增加到10,从上图(a)中可以看出当n超过6以后fscore值基本不再增长。...tensorflow版 PSENet训练和测试 项目相关代码 和预训练模型获取: 关注微信公众号 datayx 然后回复 pse 即可获取。...3.model下载下来之后没有checkpoint这个文件,自己新建一个: 模型解压后的三个文件放在resnet_v1_50文件夹下 eval.py第172行 model_path = os.path.join

    1.4K50

    使用TensorFlow训练循环神经网络语言模型

    读了将近一个下午的TensorFlow Recurrent Neural Network教程,翻看其在PTB上的实现,感觉晦涩难懂,因此参考了部分代码,自己写了一个简化版的Language Model...代码地址:Github 转载请注明出处:Gaussic 语言模型 Language Model,即语言模型,其主要思想是,在知道前一部分的词的情况下,推断出下一个最有可能出现的词。...这可能被你认为是常识,但是在自然语言处理中,这个任务是可以用概率统计模型来描述的。就拿The fat cat sat on the mat来说。...以上均是传统语言模型的描述。如果不太深究细节,我们的任务就是,知道前面n个词,来计算下一个词出现的概率。并且使用语言模型来生成新的文本。 在本文中,我们更加关注的是,如何使用RNN来推测下一个词。...数据准备 TensorFlow的官方文档使用的是Mikolov准备好的PTB数据集。

    87330

    转载|使用PaddleFluid和TensorFlow训练序列标注模型

    上一篇通过转载|使用PaddleFluid和TensorFlow训练RNN语言模型大家了解了: 在 PaddleFluid 和 TensorFlow 平台下如何组织序列输入数据; 如何使用循环神经网络单元...在 PaddleFluid 和 TensorFlow 中,通过数据并行方式使用多块 GPU 卡进行训练。...进入训练的双层循环(外层在 epoch 上循环,内层在 mini-batch 上循环),直到训练结束。 TensorFlow 1. 调用 TensorFlow API 描述神经网络模型。...TensorFlow:使用Dataset API 在之前的篇章中我们都使用 TensorFlow 的 placeholder 接入训练数据,这一篇我们使用一种新的方式 TensorFlow 在 r1.3...模型中核心模块:LSTM 单元在两个平台下的差异及注意事项请参考上一篇:使用 PaddleFluid 和 TensorFlow 训练 RNN 语言模型,这里不再赘述。

    64630

    转载|使用PaddleFluid和TensorFlow训练RNN语言模型

    注意:在运行模型训练之前,请首先进入 data 文件夹,在终端运行 sh download.sh 下载训练数据。...python rnnlm_fluid.py 在终端运行以下命令便可以使用默认结构和默认参数运行 TensorFlow 训练 RNN LM。...在自然语言处理任务中,一套好的词向量能够提供丰富的领域知识,可以通过预训练获取,或者与最终任务端到端学习而来。...进入训练的双层循环(外层在 epoch 上循环,内层在 mini-batch 上循环),直到训练结束。 TensorFlow 1. 调用 TensorFlow API 描述神经网络模型。...运行训练 运行训练任务对两个平台都是常规流程,可以参考上文在程序结构一节介绍的流程,以及代码部分:PaddleFluid vs. TensorFlow,这里不再赘述。

    71630

    TStor CSP文件存储在大模型训练中的实践

    在大模型技术的快速演进中也暴露了若干挑战。...训练架构】 在整个训练过程中,我们从如下几个方面进一步剖析TStor CSP的实现方案: 一、高速读写CheckPoint 对于大模型分布式训练任务来说,模型CheckPoint的读写是训练过程中的关键路径...在训练过程中,模型每完成一个 epoch迭代就有需要对CheckPoint进行保存。在这个CheckPoint保存过程中,GPU算力侧需要停机等待。...在大模型系统中同样如此,存储系统的IO中断或数据丢失会直接影响模型训练效果,严重者会导致近几个epoch任务需要推倒重做,大大影响了业务效率。...TStor CSP在支撑大模型训练场景中不断优化自身的运维管控能力,顺利支持了多套大模型业务的复杂运维需求。 图形化运维 集群创建,扩容以及后期的运维都可以通过在CSP控制台操作完成。 【图7.

    45120
    领券