2:TensorFlow的张量:
张量就是多维数组(列表),用“阶”表示张量的维度。...0 阶张量称作标量,表示一个单独的数; 举例 S=123
1 阶张量称作向量,表示一个一维数组; 举例 V=[1,2,3]
2 阶张量称作矩阵,表示一个二维数组,它可以有 i 行 j 列个元素,每个元素可以用行号和列号共同索引到...; 举例 m=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
判断张量是几阶的,就通过张量右边的方括号数,0 个是 0 阶,n 个是 n 阶,张 量可以表示 0 阶到 n 阶数组(...:0 的张量,shape=(2,)表示一维数组长度为 2, dtype=float32 表示数据类型为浮点型。...我们实现上述计算图:
可以打印出这样一句话:Tensor(“matmul:0”, shape(1,1), dtype=float32), 从这里我们可以看出,print 的结果显示 y 是一个张量,只搭建承载计算过程的