首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用BERT和TensorFlow构建多标签文本分类器

它与多类分类问题有什么不同? 在多级分类中,每个样本被分配给一个且仅一个标签:水果可以是苹果或梨,但不能同时是两者。让我们考虑一个三个类的例子C = [“Sun,”Moon,Cloud“]。...简要讨论一下BERT 在2018年10月,谷歌发布了一种名为BERT的新语言表示模型,它代表变形金刚的双向编码器表示。...例如: 这只是BERT的基本概述。 好消息: Google已将BERT上传到TensorFlow Hub,这意味着可以直接使用预训练模型来解决我们的NLP问题,包括文本分类或句子相似性等。...预测电影评论的示例,二进制分类问题作为存储库中的示例代码提供。在本文中将重点介绍BERT在多标签文本分类问题中的应用。因此将基本上修改示例代码并应用必要的更改以使其适用于多标签方案。...在简单的二进制分类中,两者之间没有太大的区别,但是在多国分类的情况下,sigmoid允许处理非独占标签(也称为多标签),而softmax处理独占类。

10.6K41

tensorflow 2.0+ 预训练BERT模型的文本分类

然后,我们将演示预训练BERT模型在文本分类任务的微调过程,这里运用的是TensorFlow 2.0+的 Keras API。 文本分类–问题及公式 一般来说, 分类是确定新样本的类别问题。...我们有数据集D,在文档中包含文本序列,如 ? 这里 Xi 是每一段文本 而N 是文本的个数。 实现分类的算法称为分类器。...我们不会讨论太多细节,但与原始transformers (Vaswani et al., 2017) 的主要区别是, BERT没有解码器, 但在基本版本中堆叠了12个编码器,而且在更大的预训练模型中会增加编码器的数量...我们可以看到,BERT 可以将预训练的 BERT 表示层嵌入到许多特定任务中,对于文本分类,我们将只在顶部添加简单的 softmax 分类器。 ? ?...使用TensorFlow 2.0+ keras API微调BERT 现在,我们需要在所有样本中应用 BERT tokenizer 。我们将token映射到词嵌入。

2.5K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tensorflow实现朴素贝叶斯分类器

    朴素贝叶斯分类器是基于贝叶斯定理以及一些有关特征独立性的强(朴素)假设的简单概率分类器,也称“独立特征模型”。...本文demo使用TF的实现朴素贝叶斯分类器,用TensorFlow_probability概率库实现参数可训练的高斯分布变种。 [iris.png] 1....从每个样品中测量出四个特征:萼片和花瓣的长度和宽度。本文目标是构建一个朴素的贝叶斯分类器模型,根据萼片长度和萼片宽度特征(因此,只有4个特征中的2个)预测正确的类别。...贝叶斯分类器的基本方程式是贝叶斯定律: [w5jlw90ei5.png] d是特征维数,k是类的数目,P(Y)是类别的先验分布,P(X | Y)是输入的类条件分布 朴素贝叶斯分类器假设数据特征...在这种情况下,类条件分布分解为 [e3p71gjk6k.png] 有了类的先验分布和类条件分布,朴素贝叶斯分类器模型简化为 [s8ry259ozw.png] 3.TensorFlow math api

    1.5K32

    【tensorflow速成】Tensorflow图像分类从模型自定义到测试

    TensorFlow = Tensor + Flow Tensor 就是张量,代表 N 维数组,与 Caffe 中的 blob 是类似的;Flow 即流,代表基于数据流图的计算。...2.1数据准备 上一节我们说过 Caffe 中的数据准备,只需要准备一个 list 文件,其中每一行存储 image、labelid 就可以了,那是 Caffe 默认的分类网络的 imagedata 层的输入格式...相比之下,TensorFlow 中的数据输入接口就要复杂很多,更新也非常快,我知乎有一篇文章,说过从《从 Caffe 到 TensorFlow 1,IO 操作》,有兴趣的读者可以了解一下。...到此,数据接口就定义完毕了,接下来在训练代码中看如何使用迭代器进行数据读取就可以了。 关于更多 TensorFlow 的数据读取方法,请移步知乎专栏和公众号。...04总结 本篇内容讲解了一个最简单的分类例子,相比大部分已封装好的 mnist 或 cifar 为例的代码来说更实用。

    72050

    广告行业中那些趣事系列:详解BERT中分类器源码

    广告系列中前几篇文章有从理论的方面讲过BERT的原理,也有从实战的方面讲过使用BERT构建分类模型。本篇从源码的角度从整体到局部分析BERT模型中分类器部分的源码。...具体如下图所示: 图1 BERT分类器整体模块划分 因为原生态BERT预训练模型动辄几百兆甚至上千兆的大小,模型训练速度非常慢,对于BERT模型线上化非常不友好,所以使用目前比较火的BERT最新派生产品...""" 自定义模型估计器(model_fn_builder) input:bert_config:bert相关的配置 num_labels:标签的数量 init_checkpoint...("data_dir") 总结 本篇主要讲解BERT中分类器部分的源码。...通过整体到局部的方式我们可以对BERT中的分类器源码有深入的了解。后面可以根据实际的业务需求对分类器进行二次开发。

    47310

    使用TensorFlow 2.0的简单BERT

    作者 | Gailly Nemes 来源 | Medium 这篇文章展示了使用TensorFlow 2.0的BERT [1]嵌入的简单用法。...由于TensorFlow 2.0最近已发布,该模块旨在使用基于高级Keras API的简单易用的模型。在一本很长的NoteBook中描述了BERT的先前用法,该NoteBook实现了电影评论预测。...在这篇文章中,将看到一个使用Keras和最新的TensorFlow和TensorFlow Hub模块的简单BERT嵌入生成器。所有代码都可以在Google Colab上找到。...在Keras中的嵌入模型 预处理 BERT层需要3个输入序列: 令牌ID:句子中的每个令牌。...中的合并嵌入与第一个标记的嵌入之间的差异为0.0276。 总结 这篇文章介绍了一个简单的,基于Keras的,基于TensorFlow 2.0的高级BERT嵌入模型。

    8.5K10

    TensorFlow 2.0中的多标签图像分类

    开始使用它进行业务转型的最简单方法是,识别简单的二进制分类任务,获取足够的历史数据并训练一个好的分类器以在现实世界中很好地进行概括。总有某种方法可以将预测性业务问题归为是/否问题。...浏览器上进行更强大的生产部署 个人非常喜欢在TensorFlow 1.x中构建自定义估算器,因为它们提供了高度的灵活性。...应该冻结要素提取器层中的变量,以便训练仅修改新的分类层。通常,与处理特征提取器的原始数据集相比,使用非常小的数据集时,这是一个好习惯。...附上分类头 现在,可以将特征提取器层包装在tf.keras.Sequential模型中,并在顶部添加新层。...如果它们在多标签分类任务中具有相同的重要性,则对所有标签取平均值是非常合理的。在此根据TensorFlow中的大量观察结果提供此指标的实现。

    6.8K71

    广告行业中那些趣事系列8:详解BERT中分类器源码

    广告系列中前几篇文章有从理论的方面讲过BERT的原理,也有从实战的方面讲过使用BERT构建分类模型。本篇从源码的角度从整体到局部分析BERT模型中分类器部分的源码。...具体如下图所示: 图1 BERT分类器整体模块划分 因为原生态BERT预训练模型动辄几百兆甚至上千兆的大小,模型训练速度非常慢,对于BERT模型线上化非常不友好,所以使用目前比较火的BERT最新派生产品...""" 自定义模型估计器(model_fn_builder) input:bert_config:bert相关的配置 num_labels:标签的数量 init_checkpoint...("data_dir") 总结 本篇主要讲解BERT中分类器部分的源码。...通过整体到局部的方式我们可以对BERT中的分类器源码有深入的了解。后面可以根据实际的业务需求对分类器进行二次开发。

    29140

    使用Tensorflow构建属于自己的图片分类器

    在面对具体的问题时,我们总需要选择算法、训练算法、针对具体问题进行调优,这也是大多数从事机器学习行业的人的工作。下面我就以一个图片分类器的构建为例,说明如何构建一个属于自己的AI模型。...说到图片分类器,有的同学可能又存在疑问?市面上不是已经有很多模型了吗?比如拍照识花、给猫狗图片分类等等。...对的,本文就是在这些模型的基础上,训练出能够识别我常喝的两种牛奶的分类器(牛顿不是也说过,要站在巨人的肩膀上。。。)。我常喝的牛奶是长这样的: ? ?...要构建自己的图片分类器,首先需要数据,数据不能太少。在深度学习领域,数据往往比算法更重要(不是我说的,吴恩达说的。。。)。在本问题中,我们需要的数据就是有关这两种牛奶包装的图片。...至此,训练我们自己的分类器的任务就结束了,在下一篇文章中,我将带领大家探索如何在Android手机上使用我们的图片分类器。

    1.1K60

    TensorFlow 入门(2):使用DNN分类器对数据进行分类

    DNN(深度神经网络)分类器实现对鸢尾花的分类。...这就是我对于官方的 DNN 分类器示例的一些理解,希望能帮助读者学习,完整代码: #!...从这里也可以看到,DNN 分类器的训练过程是比较耗时的,具体执行的过程并不算特别耗时。...学会使用 DNN 分类器之后,如果有一些数据,有几个输入特征值,需要将其分类,就可以采用 DNN 分类器很方便地对其进行处理,前提是训练的数据集数量足够,这样才能达到比较好的训练效果。...其他还有很多问题可以通过 DNN 分类器解决,了解这个工具后,遇到问题时可以想想能否用这些机器学习的工具帮忙解决问题,在使用过程中,逐步理解各种神经网络的知识,如果直接看理论,难度很大也很枯燥,在实践中学习会更加容易

    21.7K40

    利用TensorFlow实现多元线性回归分类器

    从今天的推文开始,我打算把经典的机器学习算法,都用tf实现一遍。这样一来可以熟悉一下机器学习算法,二来可以对tf有比较好的掌握,如果你是新手,那就跟着我的节奏,一起学习吧。讲的不好,大神轻拍~。...Github 地址: https://github.com/Alvin2580du/machine_learning_with_tensorflow.git # 导入需要的模块 # - * - coding...: utf-8 - * - import tensorflow as tf import numpy as np import pandas as pd from sklearn import datasets...所以这里In_size就是训练数据的维度,也就是变量的个数。而out_size是输出的维度,就是因变量的维度,所以是3....),模型最后输出是softmax多分类函数,所以最后每个样本都会有一个属于不同类别的概率值。

    1.2K80

    简单的TensorFlow分类教程

    本篇文章有2个topic,简单的分类器和TensorFlow。首先,我们会编写函数生成三种类别的模拟数据。第一组数据是线性可分的,第二种是数据是月牙形数据咬合在一起,第三种是土星环形数据。...TensorFlow的使用方法会在建立三个模型的过程中引入,减小学习的阻力。 生成模拟数据 生成模拟数据集的方法很简单,利用正弦、圆等方程产生有规律的数据,然后加入一些随机扰动模拟噪音。...接下来,W和b是模型的参数,经过训练,不断修正。这类型的数据,在TensorFlow中为tf.Variable类型,同时也给定了W和b的初始化方法,即全部初始化为0.0。...WB 可以看到,我们最后学到的其实是一条直线。 类多项式模型 一个简单的两个隐藏层的神经网络分类器模型,第一层隐层有32个神经元,激活函数为tanh,第二个隐层有8个神经元,激活函数同样为tanh。...moon 类圆模型 第三组数据是环形数据,为了得到一个类圆的分类边界,我们需要增加神经网络的隐藏层数量,一个有四个隐藏层的神经网络分类器。

    52830

    Tensorflow实践:用神经网络训练分类器

    任务: 使用tensorflow训练一个神经网络作为分类器,分类的数据点如下: 螺旋形数据点 原理 数据点一共有三个类别,而且是螺旋形交织在一起,显然是线性不可分的,需要一个非线性的分类器。...输入的数据点是二维的,因此每个点只有x,y坐标这个原始特征。这里设计的神经网络有两个隐藏层,每层有50个神经元,足够抓住数据点的高维特征(实际上每层10个都够用了)。...最后输出层是一个逻辑回归,根据隐藏层计算出的50个特征来预测数据点的分类(红、黄、蓝)。 一般训练数据多的话,应该用随机梯度下降来训练神经网络,这里训练数据较少(300),就直接批量梯度下降了。...accuracy( predictions, labels)) w1, b1, w2, b2, w3, b3 = weights # 显示分类器...step 48000: 0.112472 Training accuracy: 99.3% Loss at step 49000: 0.112358 Training accuracy: 99.3% 分类器

    78830

    机器学习-使用TensorFlow for Poets训练图像分类器

    要通过TensorFlow for Poets训练一个图像分类器,我们只需要提供一样东西 ——训练数据。也就是一个有很多图像的图像目录: ?...我们有了训练数据后我们就可以开始训练分类器了,我们会使用TensorFlow来做这一步。...也就是我们今天所要做的事,之前的文章中我们讨论过如何区分苹果和橘子的不同,我们发现手动做这个工作是不可能的。...在TensorFlow for Poets中这就是一个标记好的图片清单,图片分类器仅仅是一个函数f(x)=y在这里,x是一个2D的图像像素矩阵,y是玫瑰标签。...当然不是很长,事实上TensorFlow for Poets并不是从零开始训练分类器,它是从一个现有的叫做Inception的分类器开始训练的,Inception是谷歌最好的图像分类器之一,并且它是开源的

    1.2K20

    BERT中的黑暗秘密

    BERT的简单介绍 BERT代表Transformer的双向编码器表示。...垂直模式表示对单个标记的关注,它通常是[SEP]标记(表示句子结束的特殊标记)或[CLS]标记(作为提供给分类器的完整序列表示使用的特殊BERT标记)。...以下是BERT在七项GLUE任务中五种注意力的比例(每一列代表所有层中所有头部的100%): ? 图2所示。在选定的GLUE任务上,BERT的自注意映射类型的比例进行了微调。...我们对每个选择的GLUE数据集进行了三个实验: 预训练模型的权重冻结,并使用特定任务的分类器,看看BERT的表现 从正态分布中随机初始化模型,并对任务数据集进行3个epochs的finetune,然后看看...这个2013年的模型相比之下很小,而且也采用随机向量作为输入表示,但是它在二进制分类上比我们的随机+finetuneBERT多7点。 有没有可以在语言学上解释的自注意力头?

    79531

    人工智能|基于 TensorFlow.js 的迁移学习图像分类器

    问题描述 TensorFlow.js是一个基于deeplearn.js构建的强大而灵活的Javascript机器学习库,它可直接在浏览器上创建深度学习模块。...接下来我们将学习如何建立一个简单的“可学习机器”——基于 TensorFlow.js 的迁移学习图像分类器。...解决方案 加载 TensorFlow.js 和MobileNet 模型 在编辑器中创建一个HTML文件,命名为index.html,添加以下内容。 的基础上添加一个自定义的分类器 现在,让我们把它变得更加实用。我们使用网络摄像头动态创建一个自定义的 3 对象的分类器。...结语 我们在这里主要是加载并运行一个名为 MobileNet 的流行的预训练模型从而实现在浏览器中的图像分类问题。

    1.3K41

    基于Tensorflow的Quick Draw图像分类

    基于Tensorflow的Quick Draw图像分类 1、数据集介绍 2、Quick Draw图像分类 2.1 数据获取 2.2 设置环境 2.3 数据预处理 2.4 模型创建 2.5 模型训练和测试...2.6 模型保存、加载和重新测试 1、数据集介绍   Google的“Quick Draw”数据集是一个开源的数据集。...该数据集共有345个类别,共5000万张图片,所有这些图片都是由参与挑战的1500万名用户在20s或者更短的时间内绘制完成。   ...这里将在10个类别的100万张图片上进行学习,为了测试模型的辨别力,特意选择了一些比较相似的图像 2、Quick Draw图像分类 2.1 数据获取   从Google 下载数据,并将其保存至名为"data_files..."的空目录下面。

    39920
    领券