传输的编码的平均长度就是: ? 这个值与上方的随机变量的熵相等。熵和最短编码长度的这种关系是一种普遍的情形。Shannon 编码定理表明熵是传输一个随机变量状态值所需的比特位下界(最短平均编码长度)。...(因为用 q(x) 来编码的样本来自于分布 q(x) ,所以 H(p,q) 中的概率是 p(x))。此时就将 H(p,q) 称之为交叉熵。举个例子。...≥H(p)(当 p(x)=q(x) 时取等号,此时交叉熵等于信息熵)并且当 H(p) 为常量时(注:在机器学习中,训练数据分布是固定的)最小化相对熵 DKL(p||q) 等价于最小化交叉熵 H(p,q)...在机器学习中,我们希望训练数据上模型学到的分布 P(model) 和真实数据的分布 P(real) 越接近越好,所以我们可以使其相对熵最小。...得证,交叉熵可以用来计算学习模型分布与训练分布之间的差异。交叉熵广泛用于逻辑回归的Sigmoid和Softmax函数中作为损失函数使用。这篇文章先不说了。
传输的编码的平均长度就是: ? 这个值与上方的随机变量的熵相等。熵和最短编码长度的这种关系是一种普遍的情形。Shannon 编码定理表明熵是传输一个随机变量状态值所需的比特位下界(最短平均编码长度)。...) 设 p(x)、q(x) 是 离散随机变量 X 中取值的两个概率分布,则 p 对 q 的相对熵是: ?...≥H(p)(当 p(x)=q(x) 时取等号,此时交叉熵等于信息熵)并且当 H(p) 为常量时(注:在机器学习中,训练数据分布是固定的)最小化相对熵 DKL(p||q) 等价于最小化交叉熵 H(p,q)...在机器学习中,我们希望训练数据上模型学到的分布 P(model) 和真实数据的分布 P(real) 越接近越好,所以我们可以使其相对熵最小。...得证,交叉熵可以用来计算学习模型分布与训练分布之间的差异。交叉熵广泛用于逻辑回归的Sigmoid和Softmax函数中作为损失函数使用。这篇文章先不说了。
,其中就有神经网络中常用的以相对熵和交叉熵构建的损失函数。...那么什么是相对熵和交叉熵呢?下面就分别进行介绍。...设某离散型随机变量有两个概率分布 和 ,它们之间的相对熵(relative entropy)定义为: 在信息论中,通常会按照7.3节(7.3.2)式的约定,写作: 在上述定义中约定:...(7.4.1)式,两个分布 和 是针对同一个随机变量而言,这点特别要注意,不是两个随机变量的概率分布。...二分类的交叉熵的交叉熵为损失函数,常用于Logistic回归和神经网络,在第4章4.4.3节中,曾使用Pytorch提供的函数实现了交叉熵损失函数,下面的程序演示中用的是scikit-learn库的log_loss
交叉熵(也称为对数损失)是分类问题中最常用的损失函数之一。但是,由于当今庞大的库和框架的存在以及它们的易用性,我们中的大多数人常常在不了解熵的核心概念的情况下着手解决问题。...所以,在这篇文章中,让我们看看熵背后的基本概念,把它与交叉熵和KL散度联系起来。我们还将查看一个使用损失函数作为交叉熵的分类问题的示例。 什么是熵?...分母中2的幂对应于用于传输消息的位数。现在,很明显,预测的分布q与真实的分布p有很大的不同。 因此,现在我们可以将交叉熵表示为真概率分布p和预测概率分布q的函数,其表示为: ?...在上面的例子中,我拍摄了一只浣熊的图像,所以在真实分布中,它的概率是100%,其他的概率是0。我们可以用这两种分布之间的交叉熵作为代价函数,称之为交叉熵损失。...最后,我们以一个例子来说明交叉熵损失函数的实际应用。希望本文能澄清熵、交叉熵和KL散度背后的基本概念及其相互关系。 作者:Aakarsh Yelisetty deephub翻译组
1 主题:物理概念的熵 熵(entropy)是物理中的一个概念。如下图,水有三种状态:固态、液态和气态,分别以冰、水和水蒸气的形式存在。 ?...它们具有不同的熵值: 冰中的分子位置固定,处于稳定状态,因此冰具有低熵值 水中的分子相对可以进行一些移动,因此水具有中熵值 水蒸气中的分子几乎可以移动到任何地方,因此水蒸气具有高熵值 现在你大体有个感觉...正规定义:使用专门为另一个分布制作的密码表来发送某个分布中事件的信息,此时信息的平均编码长度定义为交叉熵(cross-entropy)。...把哈登动作分布称为 p 分布,把威少动作分布称为 q 分布,那么 p 分布对 q 分布的交叉熵公式如下 ? 而 q 分布对 p 分布的交叉熵公式如下(把 p 和 q 位置反过来) ?...熵和交叉熵的总结在下图。 ?
公式 定义 在信息论中,若一个符号字符串中的每个字符的出现概率 已知,则可用香农熵估计该字符串中每个符号 编码所需的平均最小位数....除了数学表达式相似以外,完全可以将这里的熵和其热力学概念联系起来....例如,可计算单次"HELLO"的熵: 因此,采用最优编码方案时,"Hello"中的每个符号需要2位计算单词"Hello"中的每个符号需要2位....有这样一个定理:当p=q时,交叉熵去的最小值.因此可以利用交叉熵比较一个分布与另一个分布的吻合情况.交叉熵越接近与熵,q便是针对p更好的逼近,实际上,模型的输出与期望输出越接近,交叉熵也会越小,这正是损失函数所需要的...在对熵进行最小化时,将 替换为log完全没有任何问题,因为两者只相差一个常系数. 参考资料 面向机器智能的tensorflow实践
具体的过程,我们看一下下面的步骤: 如果 , 如果 所以 Softmax 函数的导数如下面所示: ▌交叉熵损失函数 下面我们来看一下对模型优化真正起到作用的损失函数——交叉熵损失函数。...交叉熵函数体现了模型输出的概率分布和真实样本的概率分布的相似程度。它的定义式就是这样: 在分类问题中,交叉熵函数已经大范围的代替了均方误差函数。...我们来看一下,在 Python 中是如何实现交叉熵函数的: ▌交叉熵损失函数的求导过程 就像我们之前所说的,Softmax 函数和交叉熵损失函数是一对好兄弟,我们用上之前推导 Softmax 函数导数的结论...,配合求导交叉熵函数的导数: 加上 Softmax 函数的导数: y 代表标签的 One-hot 编码,因此 ,并且 。...还有许多文章中会提到 SoftmaxLoss,其实它就是 Softmax 函数和交叉熵函数的组合,跟我们说的 CrossEntropyLoss 函数是一个意思,这点需要读者自行分辨即可。
之前在TensorFlow中实现不同的神经网络,作为新手,发现经常会出现计算的loss中,出现Nan值的情况,总的来说,TensorFlow中出现Nan值的情况有两种,一种是在loss中计算后得到了Nan...值,另一种是在更新网络权重等等数据的时候出现了Nan值,本文接下来,首先解决计算loss中得到Nan值的问题,随后介绍更新网络时,出现Nan值的情况。...函数,然后计算得到的Nan,一般是输入的值中出现了负数值或者0值,在TensorFlow的官网上的教程中,使用其调试器调试Nan值的出现,也是查到了计算log的传参为0;而解决的办法也很简单,假设传参给...不过需要注意的是,在TensorFlow中,tf.nn.sigmoid函数,在输出的参数非常大,或者非常小的情况下,会给出边界值1或者0的输出,这就意味着,改造神经网络的过程,并不只是最后一层输出层的激活函数...举例说明就是TensorFlow的官网给的教程,其输出层使用的是softmax激活函数,其数值在[0,1],这在设计的时候,基本就确定了会出现Nan值的情况,只是发生的时间罢了。
-y_i)log(1-log(p_i))] 多分类 L=\frac{1}{N}\sum_iL_i=\frac{1}{N}\sum_i -\sum_{c=1}^m y_{ic} log(p_{ic}) 交叉熵损失函数及其与熵和...KL散度的关系 最小化交叉熵等价于最小化KL散度等价于最大化对数似然估计。
3 相对熵(KL散度) 相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence...DKL的值越小,表示q分布和p分布越接近。 4 交叉熵 对式3.1变形可以得到: ? 等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵: ?...在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即 ? ,由于KL散度中的前一部分 ? 不变,故在优化过程中,只需要关注交叉熵就可以了。...所以一般在机器学习中直接用交叉熵做loss,评估模型。 ▌机器学习中交叉熵的应用 1 为什么要用交叉熵做loss函数?...交叉熵在单分类问题上基本是标配的方法 ? 上式为一张样本的loss计算方法。式2.1中n代表着n种类别。 举例说明,比如有如下样本 ? 对应的标签和预测值 ? 那么 ?
image.png 极大似然估计 image.png 交叉熵 image.png source: wikipedia image.png 参考链接 [1] http://willwolf.io
简单运用这节课我们学习如何在 Tensorflow 中使用 Variable .在 Tensorflow 中,定义了某字符串是变量,它才是变量,这一点是与 Python 所不同的。...定义语法: state = tf.Variable()import tensorflow as tfstate = tf.Variable(0, name='counter')# 定义常量 oneone...中设定了变量,那么初始化变量是最重要的!!...所以定义了变量以后, 一定要定义 init = tf.initialize_all_variables() .到这里变量还是没有被激活,需要再在 sess 里, sess.run(init) , 激活...一定要把 sess 的指针指向 state 再进行 print 才能得到想要的结果!以上就是我们今天所学的 Variable 打开模式。
通用的说,熵(Entropy)被用于描述一个系统中的不确定性(the uncertainty of a system)。在不同领域熵有不同的解释,比如热力学的定义和信息论也不大相同。...事实上交叉熵和KL散度的公式非常相近,其实就是KL散度的后半部分(公式2.1):A和B的交叉熵 = A与B的KL散度 – A的熵。...一种信息论的解释是: 熵的意义是对A事件中的随机变量进行编码所需的最小字节数。 KL散度的意义是“额外所需的编码长度”如果我们用B的编码来表示A。...一些对比与观察: KL散度和交叉熵的不同处:交叉熵中不包括“熵”的部分 KL散度和交叉熵的相同处:a. 都不具备对称性 b....交叉熵比照误分率还有更多的优势,因为它可以和很多概率模型完美的结合。
tf.global_variables(), sess.run(tf.global_variables())): print '\n', x, y 实例 # coding=utf-8 import tensorflow.../core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0...moving_variance:0' shape=(1,) dtype=float32_ref> [ 452.62246704] Process finished with exit code 0 法二: 指定变量名打印...tf.global_variables_initializer()) t = sess.run(output, feed_dict={input_x:i_p}) # 法二: 指定变量名打印.../core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0
今天说一下tensorflow的变量共享机制,首先为什么会有变量共享机制? 这个还是要扯一下生成对抗网络GAN,我们知道GAN由两个网络组成,一个是生成器网络G,一个是判别器网络D。...G的任务是由输入的隐变量z生成一张图像G(z)出来,D的任务是区分G(z)和训练数据中的真实的图像(real images)。...所以这里D的输入就有2个,但是这两个输入是共享D网络的参数的,简单说,也就是权重和偏置。而TensorFlow的变量共享机制,正好可以解决这个问题。...TF中是由Variable_scope来实现的,下面我通过几个栗子,彻底弄明白到底该怎么使用,以及使用中会出现的错误。栗子来源于文档,然后我写了不同的情况,希望能帮到你。...的相同的,还有这里用的是 # get_variable定义的变量,这个和Variable # 定义变量的区别是,如果变量存在get_variable # 会获得他的值,如果不存在则创建变量 def
1、log损失 log损失的基本形式为: log(1+exp(−m))log(1+exp(−m)) log\left ( 1+exp\left ( -m \right ) \right ) 其中...对上述的公式改写: ⇒1m∑i=1mlog(1+exp(−y(i)⋅y(i)^))⇒1m∑i=1mlog(1+exp(−y(i)⋅y(i)^)) \Rightarrow \frac{1}{m}\sum..._{i=1}^{m}log \sigma \left ( y^{\left ( i \right )}\cdot \hat{y^{\left ( i \right )}} \right ) 2、交叉熵...交叉熵的一般形式为: H(y,y^)=−∑y⋅logσ(y^)H(y,y^)=−∑y⋅logσ(y^) H\left ( y,\hat{y} \right )=-\sum y\cdot log\sigma...\left ( \hat{y} \right ) 对于mmm个样本,则交叉熵为: H(y,y^)=−1m∑i=1m[I{y(i)=1}⋅logσ(y^)+I{y(i)=−1}⋅log(1−σ(y^))
1、log损失 image.png 2、交叉熵 image.png
交叉熵的原理 交叉熵刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。...除此之外,交叉熵还有另一种表达形式,还是使用上面的假设条件: 其结果为: 以上的所有说明针对的都是单个样例的情况,而在实际的使用训练过程中,数据往往是组合成为一个batch来使用,所以对用的神经网络的输出应该是一个...在TensorFlow中实现交叉熵 在TensorFlow可以采用这种形式: cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y...上述代码实现了第一种形式的交叉熵计算,需要说明的是,计算的过程其实和上面提到的公式有些区别,按照上面的步骤,平均交叉熵应该是先计算batch中每一个样本的交叉熵后取平均计算得到的,而利用tf.reduce_mean...由于在神经网络中,交叉熵常常与Sorfmax函数组合使用,所以TensorFlow对其进行了封装,即: cross_entropy = tf.nn.sorfmax_cross_entropy_with_logits
领取专属 10元无门槛券
手把手带您无忧上云