首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于TensorFlow和Keras的图像识别

    简介 TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。 定义 如果您不了解图像识别的基本概念,将很难完全理解本文的内容。...TensorFlow/Keras TensorFlow是Google Brain团队创建的一个Python开源库,它包含许多算法和模型,能够实现深度神经网络,用于图像识别/分类和自然语言处理等场景。...Keras是一个高级API(应用程序编程接口),支持TensorFlow(以及像Theano等其他ML库)。...其设计原则旨在用户友好和模块化,尽可能地简化TensorFlow的强大功能,在Python下使用无需过多的修改和配置 图像识别(分类) 图像识别是指将图像作为输入传入神经网络并输出该图像的某类标签。...至此图像分类器已得到训练,并且可以将图像传入CNN,CNN将输出关于该图像内容的猜想。 机器学习的工作流 在开始训练图像分类器的示例之前,让我们先来了解一下机器学习的工作流程。

    2.8K20

    基于深度学习的图像目标识别预测 | CV | Tensorflow | Keras

    在人工智能研究的大潮中,如何模拟人类对于静态或动态目标的有效识别预测一直是研究热点,通过智能技术实现对于目标特征的学习并对特定目标进行快速识别,预测得出目标识别概率,实现基于深度学习模型在复杂背景...基础操作 首先,安装Keras、TensorFlow,将TensorFlow作为后端,先去安装TensorFlow。...全连接层 这个层在 Keras 中称为被称之为 Dense 层,只需要设置输出层的维度,然后Keras就会帮助自动完成了。...因此,权重 w 的值应该是 3。 使用简单的梯度下降来作为优化器,均方误差(MSE)作为损失值。...为了去构建这个网络,将利用Keras API的功能来构建一个单独的 fire 模块,当构建完模型后即可对一幅图识别概率预测。

    1.5K20

    具有Keras和Tensorflow Eager的功能性RL

    分享了如何在RLlib的策略构建器API中实现这些想法,消除了数千行“胶水”代码,并为Keras和TensorFlow 2.0提供支持。 ? 为什么要进行函数式编程?...鉴于PyTorch(即命令执行)的日益普及和TensorFlow 2.0的发布,看到了通过功能性地重写RLlib算法来改善RLlib开发人员体验的机会。...两种策略都实现相同的行为,但是功能定义要短得多。...在这种模式下,调用损失函数以生成标量输出,该标量输出可用于通过SGD优化模型变量。在紧急模式下,将同时调用action_fn和loss_fn来分别生成操作分配和策略丢失。...对于图形和急切模式,必须以相同的方式访问和优化这些变量。幸运的是,Keras模型可以在任何一种模式下使用。

    1.6K20

    Python安装TensorFlow 2、tf.keras和深度学习模型的定义

    p=15826 深度学习的预测建模是现代开发人员需要了解的一项技能。 TensorFlow是Google开发和维护的首要的开源深度学习框架。...使用tf.keras,您可以设计,拟合,评估和使用深度学习模型,从而仅用几行代码即可做出预测。它使普通的深度学习任务(如分类和回归预测建模)可供希望完成任务的普通开发人员使用。...如何使用tf.keras开发MLP,CNN和RNN模型以进行回归,分类和时间序列预测。 如何使用tf.keras API的高级功能来检查和诊断模型。...tf.keras得到更好的维护,并与TensorFlow功能具有更好的集成。...... x = Dense(10)(x_in) 然后,我们可以用相同的方式将其连接到输出层。 ... x_out = Dense(1)(x) 连接后,我们定义一个Model对象并指定输入和输出层。

    1.6K30

    【综述专栏】损失函数理解汇总,结合PyTorch和TensorFlow2

    而对于预测的概率分布和真实的概率分布之间,使用交叉熵来计算他们之间的差距,换句不严谨的话来说,交叉熵损失函数的输入,是softmax或者sigmoid函数的输出。...的类别相同就是1,否则是0, ? 表示对于观测样本 ? 属于类别 ? 的预测概率。...reduction:string类型,'none' | 'mean' | 'sum'三种参数值 02 KL散度 我们在计算预测和真实标签之间损失时,需要拉近他们分布之间的差距,即模型得到的预测分布应该与数据的实际分布情况尽可能相近...KL散度(相对熵)是用来衡量两个概率分布之间的差异。模型需要得到最大似然估计,乘以负Log以后就相当于求最小值,此时等价于求最小化KL散度(相对熵)。所以得到KL散度就得到了最大似然。...监督学习中,因为训练集中每个样本的标签是已知的,此时标签和预测的标签之间的KL散度等价于交叉熵。

    1.8K20

    Python安装TensorFlow 2、tf.keras和深度学习模型的定义

    p=15826 ---- 深度学习的预测建模是现代开发人员需要了解的一项技能。 TensorFlow是Google开发和维护的首要的开源深度学习框架。...使用tf.keras,您可以设计,拟合,评估和使用深度学习模型,从而仅用几行代码即可做出预测。它使普通的深度学习任务(如分类和回归预测建模)可供希望完成任务的普通开发人员使用。...如何使用tf.keras开发MLP,CNN和RNN模型以进行回归,分类和时间序列预测。 如何使用tf.keras API的高级功能来检查和诊断模型。...tf.keras得到更好的维护,并与TensorFlow功能具有更好的集成。......x = Dense(10)(x_in) 然后,我们可以用相同的方式将其连接到输出层。 ...x_out = Dense(1)(x) 连接后,我们定义一个Model对象并指定输入和输出层。

    1.5K30

    机器学习的「反噬」:当 ML 用于密码破解,成功率竟然这么高!

    过去,让计算机区分猫和狗被认为是最先进的研究;而现在,图像分类就像是机器学习(ML)的「Hello World」,可以使用 TensorFlow 在几行代码中实现上。...Python、Keras 和 TensorFlow。...然后它经过一系列的卷积+合并层,变平(用于防止过度拟合的丢失),被馈送到完全连接的层,最后是输出层。输出层有 26 个类,对应于每个字母。 ?...图 11:测试模型 图 12 显示了测试精度;其中,条形图显示了字符级精度(左边的图表显示正确和错误的数目,右边的图表显示相同的百分比)。...图 19:样本字母的误差图 从图 19 中,我们可以清晰看到,该预测误差与临近度相关。然而,我们能否得到一个更为量化的衡量标准呢?

    1K20

    初探 TensorFlow.js

    Activation function(激活函数) :可以用一些激活函数来将输出从标量改为另一个非线性函数。常见的有 sigmoid、RELU 和 tanh。...Output(输出) :应用激活函数后的计算输出。 激活函数是非常有用的,神经网络的强大主要归功于它。假如没有任何激活功能,就不可能得到智能的神经元网络。...TensorFlow.js 可以使用很多预训练的模型,还可以导入使用 TensorFlow 或 Keras 创建的外部模型。...当然还可以在代码中添加更多的逻辑来实现更多功能,例如可以把数字写在 canvas 上,然后得到其图像来进行预测。 ? 识别数字 ?...但是在 TensorFlow.js 之前,没有能直接在浏览器中使用机器学习模型的 API,现在则可以在浏览器应用中离线训练和使用模型。而且预测速度更快,因为不需要向服务器发送请求。

    1.1K70

    在TensorFlow中使用模型剪枝将机器学习模型变得更小

    在本文中,我们将通过一个例子来观察剪枝技术对最终模型大小和预测误差的影响。 导入常见问题 我们的第一步导入一些工具、包: Os和Zi pfile可以帮助我们评估模型的大小。...tensorflow_model_optimization用来修剪模型。 load_model用于加载保存的模型。 当然还有tensorflow和keras。...我们将创建一个简单的神经网络来预测目标变量y,然后检查均值平方误差。...,我们发现它们具有相同的均方误差。...显然这里的观察结果不具有普遍性。也可以尝试不同的剪枝参数,并了解它们如何影响您的模型大小、预测误差/精度,这将取决于您要解决的问题。 为了进一步优化模型,您可以将其量化。

    1.2K20

    Python人工智能 | 十八.Keras搭建卷积神经网络及CNN原理详解

    它与之前的宽度和高度不同,更重要的是它跟之前的深度不同,而不是仅仅只有红绿蓝,现在你得到了K个颜色通道,这种操作称为——卷积。...如果步幅STRIDE等于1,表示每跨1个像素点抽离一次,得到的尺寸基本上和输入相同。 如果步幅STRIDE等于2,表示每次跨2个像素点抽离,意味着变为一半的尺寸。...conv1输出的大小为28 * 28 * 32,因为padding采用“SAME”的形式,conv1输出值为32,故厚度也为32,长度和宽度相同为28。...环境搭建、学习路线及入门案例 三.TensorFlow基础及一元直线预测案例 四.TensorFlow基础之Session、变量、传入值和激励函数 五.TensorFlow创建回归神经网络及Optimizer...RNN和LSTM原理详解及TensorFlow分类案例 十三.如何评价神经网络、loss曲线图绘制、图像分类案例的F值计算 十四.循环神经网络LSTM回归案例之sin曲线预测 十五.无监督学习Autoencoder

    1.5K60

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第10章 使用Keras搭建人工神经网络

    使用这个规则的变体来训练感知器,该规则考虑了网络所犯的误差。更具体地,感知器一次被馈送一个训练实例,对于每个实例,它进行预测。对于每一个产生错误预测的输出神经元,修正输入的连接权重,以获得正确的预测。...换句话说,反向传播算法为了减小误差,可以算出每个连接权重和每个偏置项的调整量。当得到梯度之后,就做一次常规的梯度下降,不断重复这个过程,直到网络得到收敛解。 笔记:自动计算梯度被称为自动微分。...计算得到该层所有神经元的(微批次的每个实例的)输出。输出接着传到下一层,直到得到输出层的输出。...这个过程就是前向传播:就像做预测一样,只是保存了每个中间结果,中间结果要用于反向传播; 然后计算输出误差(使用损失函数比较目标值和实际输出值,然后返回误差); 接着,计算每个输出连接对误差的贡献量。...在这个例子中,主输出和辅输出预测的是同一件事,因此标签相同。

    3.3K30

    大数据||使用AI算法进行滚动轴承故障精准预测

    可以用故障征兆的可信度作为输入,经过神经网络的并行数值计算输出对应故障,可以取得相对传统方式更为精确的结果并可以持续提升预测精度。 滚动轴承故障预测 滚动轴承是由内环外环滚动体和保持架四种元件组成。...机器学习框架 选用Keras+TensorFlow实现轻量级和快速开发,根据采集到的信息随机选取70%数据组作为输入样本,30%剩余组作为验证样本。对输出状态进行编码输出,构建bp神经网络。...方差:用来度量随机变量和其数学期望(即均值)之间的偏离程度 3、设备云机器学习框架:选用Keras+TensorFlow,Keras 可以在 Theano 、 TensorFlow和 CNTK等主流神经网络框架作为后端...,实现轻量级和快速开发,几行 Keras 代码就能比原生的 TensorFlow 代码实现更多的功能。...基于grafana的数据可视化仪表板,基于神经网络的TensorFlow深度学习框架与大数据分析,基于Docker容器的快速部署、边缘计算等技术在垂直行业工业互联网架构中得到充分展现;而振动监测与频谱分析

    1.5K40

    在 Python 中使用 Tensorflow 预测燃油效率

    预测燃油效率对于优化车辆性能和减少碳排放至关重要,这可以使用python库tensorflow进行预测。...以下是我们将遵循的步骤,以使用Tensorflow预测燃油效率 - 导入必要的库 - 我们导入 tensorflow、Keras、layers 和 pandas。 加载自动 MPG 数据集。...编译模型 − 我们使用均方误差 (MSE) 损失函数和 RMSprop 优化器编译模型。 训练模型 − 在训练集上训练 1000 个 epoch 的模型,并指定 0.2 的验证拆分。...评估模型 − 在测试集上进行模型评估,并计算平均 MSE 以及燃油效率和绝对误差 (MAE)。 计算新车的燃油效率 - 我们使用熊猫数据帧创建新车的功能。...我们使用与原始数据集相同的比例因子对新车的特征进行归一化。 使用经过训练的模型预测新车的燃油效率。

    24420

    Python人工智能 | 十六.Keras环境搭建、入门基础及回归神经网络案例

    在硬件和开发环境方面,Keras支持多操作系统下的多GPU并行计算,可以根据后台设置转化为Tensorflow、Microsoft-CNTK等系统下的组件。...Keras作为神经网络的高级包,能够快速搭建神经网络,它的兼容性非常广,兼容了TensorFlow和Theano。...莫烦老师推荐大家先了解神经网络基础原理,然后学习Theano教程和TensorFlow教程,作者也非常同意老师的建议,该系列文章也是先介绍基础原理,然后介绍TensorFlow用法,最终过渡到Keras...---- 四.Keras搭建回归神经网络 推荐前文《二.TensorFlow基础及一元直线预测案例》,最终输出的结果如下图所示: 1.导入扩展包 Sequential(序贯模型)表示按顺序建立模型,它是最简单的线性...) # mse表示二次方误差 sgd表示乱序梯度下降优化器 model.compile(loss='mse', optimizer='sgd') PS:是不是感觉Keras代码比TensorFlow和

    92220

    深度学习基础

    神经网络的训练过程就是不断调整这些权重和偏置,以便网络能够做出更准确的预测。...输出层:最终的输出结果可以通过激活函数进行变换,得到预测值。前馈神经网络的学习过程通过逐层传递数据,不断调整每一层的参数(权重和偏置),使得预测结果与真实值之间的误差最小化。...反向传播的核心思想是通过计算误差并将其“反向”传递,从输出层到输入层,逐层调整网络的权重,使得预测误差最小化。反向传播的工作流程:反向传播算法主要包括两个步骤:前向传播和反向传播。...前向传播:输入数据经过网络层的处理,产生最终的输出值。这个输出值与实际标签之间的差异就是误差。计算误差:通常使用损失函数(如均方误差、交叉熵损失等)来衡量输出值与真实标签之间的差异。...《神经网络与深度学习:用Python和Keras》 by Michael Nielsen这本书详细介绍了神经网络的基础,并通过Python和Keras框架提供了实用的代码示例。

    10410

    TensorFlow 模型剪枝

    我们了解到,剪枝是一种模型优化技术,包括去掉权重张量中不必要的值。这使模型更小且精度和基线模型非常接近。 在本文中,我们将通过一个示例来应用剪枝,并查看对最终模型大小和预测误差的影响。...加载保存的模型 当然还有tensorflow 和keras 最后,初始化 TensorBoard,这样我们就能将模型可视化: import os import zipfile import tensorflow...经过测试,对于这个特定的情况,layer_pruning_params比pruning_params 的误差要小。比较从不同剪枝参数得到的 MSE 是有意义的,这样你可以保证模型性能不会更差。...,我们发现它们有相同的均方差。...显然,这里的观察结果并不是通用的。你必须尝试不同的剪枝参数,并了解根据你的问题它们如何影响模型大小、预测误差和/或准确率。 为了进一步优化模型,你还可以量化它。

    1.1K20
    领券