首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

增长分析-在缓慢变化中的跳变

增长中的用户分群,如何动态圈选用户,分析其中的增长机会呢?聊一聊一种基于缓慢变化维度的分群方式。...本文首发于腾讯内部知识分享平台「乐问KM」、腾讯官方公众号「腾讯大讲堂」《数据分析:在缓慢变化中寻找跳变——基于缓慢变化维度的用户分群》,作者日后创建个人公众号,以转载形式发布本文。...(缓慢变化维度中,过去1个月领取红包22-28天的群体),使用发布器的渗透率在逐渐升高,这说明红包模块和发布器模块,用户产生了较强的交集,这里可以分析出,在产品层面迭代,促进2个模块的相互互动 运营指标构造的缓慢变化维度的构造维度需要注意如下几点...图:腾讯灯塔关于缓慢变化维度的适配 目前团队中,已经将较多长周期用户行为数据进行分层分群,作为用户基础画像的一部分,引入到数据分析之中,在日常的运营分析和异动监控中广泛应用。...作者:刘健阁 本文首发于腾讯内部知识分享平台「乐问KM」、腾讯官方公众号「腾讯大讲堂」《数据分析:在缓慢变化中寻找跳变——基于缓慢变化维度的用户分群》,作者日后创建个人公众号,以转载形式发布本文。

71150

数据分析:在缓慢变化中寻找跳变——基于缓慢变化维度的用户分群

引导语 数据分析中,我们常常有下面几种分群方式 基础属性类:年龄、性别、城市、学历、用于首次来源 ·  特点:基本是不变化的,虽然年龄、城市等也会发生变化,但本质上我们是将其作为一个用户固定属性进行分析...我们引入了数据仓库中缓慢变化维的概念,例如,每天均将用户按照过去1个月领取红包的天数做分段,这样,用户的分群是在缓慢变化,解决了分群一致性问题,监控的指标是短期变化,可以很好的监控出业务异动。 ?...,还非常容易找到业务的交集影响和变化 ·    红包敏感群体(缓慢变化维中,过去1个月领取红包22-28天),发布渗透率在逐渐提高,这说明红包模块和发布模块,用户产生了较强的交集,也许可以在产品层面迭代...,本质上是,在一个低频变化上发现其中的高频变化。...图:腾讯灯塔关于缓慢变化维的适配         目前,团队已经将较多用户行为数据,作为用户基础画像的一部分,引入到数据分析之中,在日常的运营分析和异动监控中广泛应用。 ? ?

76220
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分析:在缓慢变化中寻找跳变——基于缓慢变化维度的用户分群

    引导语 数据分析中,我们常常有下面几种分群方式: 基础属性类:年龄、性别、城市、学历、用于首次来源 特点: 基本是不变化的,虽然年龄、城市等也会发生变化,但本质上我们是将其作为一个用户固定属性进行分析...我们引入了数据仓库中缓慢变化维的概念,例如,每天均将用户按照过去1个月领取红包的天数做分段,这样,用户的分群是在缓慢变化,解决了分群一致性问题,监控的指标是短期变化,可以很好的监控出业务异动。 ?...红包敏感群体(缓慢变化维中,过去1个月领取红包22-28天),发布渗透率在逐渐提高,这说明红包模块和发布模块,用户产生了较强的交集,也许可以在产品层面迭代,促进2个模块的相互互动。...总的来说,运用运营视角缓慢变化维,本质上是,在一个低频变化上发现其中的高频变化。...图:腾讯灯塔关于缓慢变化维的适配 目前,团队已经将较多用户行为数据,作为用户基础画像的一部分,引入到数据分析之中,在日常的运营分析和异动监控中广泛应用。

    76130

    TensorFlow Serving在Kubernetes中的实践

    在model_servers的main方法中,我们看到tensorflow_model_server的完整配置项及说明如下: tensorflow_serving/model_servers/main.cc...其实TensorFlow Serving的编译安装,在github setup文档中已经写的比较清楚了,在这里我只想强调一点,而且是非常重要的一点,就是文档中提到的: Optimized build...TensorFlow Serving on Kubernetes 将TensorFlow Serving以Deployment方式部署到Kubernetes中,下面是对应的Deployment yaml...把它部署在Kubernetes中是那么容易,更是让人欢喜。...目前我们已经在TaaS平台中提供TensorFlow Serving服务的自助申请,用户可以很方便的创建一个配置自定义的TensorFlow Serving实例供client调用了,后续将完善TensorFlow

    3.1K130

    评测 | CNTK在Keras上表现如何?能实现比TensorFlow更好的深度学习吗?

    即使 Docker 容器中 Keras 的默认后端是 CNTK,一个简单的 -e KERAS_BACKEND ='tensorflow' 命令语句就可以切换到 TensorFlow。 ?...)来管理并运行 Docker 容器中的所有例子,它同时支持 CNTK 和 TensorFlow 后端,并用 logger 收集生成的日志。...在这种情况下,TensorFlow 在准确率和速度方面都表现更好(同时也打破 99%的准确率)。...我的网络避免了过早收敛,对于 TensorFlow,只需损失很小的训练速度;不幸的是,CNTK 的速度比简单模型慢了许多,但在高级模型中仍然比 TensorFlow 快得多。...结论 综上,评价 Keras 框架是否比 TensorFlow 更好,这个判断并没有设想中的那么界限分明。两个框架的准确性大致相同。

    1.4K50

    LLaVA-Read 在多模态任务中的高性能表现 !

    大多数研究致力于将视觉表示通过独立的视觉编码器整合入大型语言模型中。...请注意,作者从NLTK [64] 包中移除了停用词,因为文本段落中存在许多重复的停用词。 RQ1: 作者需要多少像素来识别单词? 作者首先研究不同模块在不同字体大小下的文本识别能力表现。...此外,无论在微调前后,带有投影的CLIP的性能都相似。 Rq2: 一个文本标记是否等同于一个视觉标记? 在图2(c)中,作者展示了三个不同模块在文本识别能力方面的表现。...PaddleOCR在识别大量文本方面表现出色,但至少需要9像素,且无法识别小于7像素的文本,而CLIP + 投影则表现更佳。...Main Results 作者在表2和表4(a)中评估了LLaVA-Read及其 Baseline 在OCRBench和其他富含文本的图像基准测试上的表现。

    21510

    DDIA:在分布式系统中,真相掌握在多数人手里?

    因此,大部分分布式算法会基于一个法定人数(_quorum_),即让所有节点进行投票:任何决策都需要达到法定人数才能生效,以避免对单节点的依赖。 其中,前面故事中的宣布某个节点死亡就是这样一种决策。...因为在一个集群中,根据鸽巢原理,系统中不可能有两个多数派做出不同的决策。第九章,讨论共识协议时,我们会展开更多细节。...当大多数节点认为前领导者死亡时,该节点仍然自顾自的行使领导权,在设计的不太好的系统中,就会带来一些问题。...但不幸,这也是不现实的,在大多数系统中,由于系统不同节点所运行软件的同构性,如果攻击者能够拿下一个节点,那他大概率能拿下所有节点。...意思是在大多数情况下,网络延迟、进程停顿和时钟漂移都是有界的,只有偶尔,他们会超过界限。这是一种比较真实的模型,即在大部分时间里,系统中的网络和进程都表现良好,否则我们不可能完成任何事情。

    27410

    Create an op on tensorflow; 在tensorflow 1.72.0 中创建一个 Op操作

    最近项目,需要创建一个 tensorflow 的一个自定义操作,用来加速tensorflow的处理效果;下面对创建过程中,遇到的问题和资源进行简要记录,进行备忘: OP 创建 参考链接: https:/.../www.tensorflow.org/guide/create_op (官方教程) Tensorflow上手3: 实现自己的Op  https://github.com/tensorflow/custom-op... (官方模板,看完上面的教程,使用该模板就可以很方便得在docker 容器中进行尝试构建;较为推荐) 何时定义一个新的OP: 现有的operation 组合不出来需要的OP; 现有的operation...tensorflow/tensorflow:custom-op-ubuntu16 docker run -it -v ${PWD}:/working_dir -w /working_dir tensorflow.../tensorflow:custom-op-ubuntu16 docker run -it tensorflow/tensorflow:custom-op-ubuntu16 /bin/bash 使用清华镜像临时下载

    77420

    在tensorflow中安装并启动jupyter的方法

    博主遇到一个问题,在anaconda中安装并配置好tensorflow和opencv后,直接输入jupyter notebook启动jupyter notebook在jupyter notebook中输入命令...,如import tensorflow并不能调用tensorflow的开发包。...原因是:如果此时直接启动jupyter,此时的jupyter是基于整个anaconda的python,而不是对应的tensorflow虚拟环境,因此进入此虚拟环境后需要重新安装jupyter notebook.../bin/activatesource activate tensorflow进入虚拟环境以后,输入命令:conda install jupyter直到安装包下载完成,在tensorflow目录下就安装了...jupyter,此时在tensorflow虚拟环境下,输入命名:jupyter notebook此时就可以调用tensorflow和opencv的库,如下图:?

    3K40

    在TensorFlow 2中实现完全卷积网络(FCN)

    这些通常从224x224x3到某个范围变化,512x512x3并且大多数具有1的长宽比,即图像的宽度和高度相等。如果它们不相等,则将图像调整为相等的高度和宽度。...在本教程中,将执行以下步骤: 使用Keras在TensorFlow中构建完全卷积网络(FCN) 下载并拆分样本数据集 在Keras中创建生成器以加载和处理内存中的一批数据 训练具有可变批次尺寸的网络 使用...在传统的图像分类器中,将图像调整为给定尺寸,通过转换为numpy数组或张量将其打包成批,然后将这批数据通过模型进行正向传播。在整个批次中评估指标(损失,准确性等)。根据这些指标计算要反向传播的梯度。...可以在Colab本身中修改python脚本,并在选择的数据集上训练不同的模型配置。完成训练后,可以从Colab中的“文件”选项卡将最佳快照下载到本地计算机。...该脚本使用TensorFlow 2.0中的新功能,该功能从.h5文件中加载Keras模型并将其保存为TensorFlow SavedModel格式。

    5.2K31

    经典再读 | NASNet:神经架构搜索网络在图像分类中的表现

    NASNet 在 CVPR2018 发表,至今已经有超过400次引用。 在神经架构搜索中,作者在较小的数据集上对神经网络架构的模块进行搜索,之后将该网络结构迁移到一个更大的数据集上。...另外,在 CIFAR-10 中得到的卷积神经元在 ImageNet 上展现了很好的泛化能力。...从上表可以发现,规模最大的模型在 ImageNet 上的的准确率达到了 82.7% ,比在此之前表现最佳的模型 DPN 高出1.2%,与未公开的研究中的模型相比较, NASNet和 SENet达到了相同的准确率...在限制计算设置的情形下 NASNet 和其他模型的对比 从上表可以看到, NASNet 在模型规模相似或具有更小网络的情形下获得了比已有模型更好的表现,包括 Inception-v1, MobileNetV1...4.4 MS COCO Object Detection mAP 在 COCO mini-val 数据集和 test-dev 数据集上的表现 NASNet 得到的图片结果展示 通过使用 Faster

    1.8K50

    【官方教程】TensorFlow在图像识别中的应用

    在过去几年里,机器学习在解决这些难题方面取得了巨大的进步。其中,我们发现一种称为深度卷积神经网络的模型在困难的视觉识别任务中取得了理想的效果 —— 达到人类水平,在某些领域甚至超过。...人类在ImageNet挑战赛上的表现如何呢?Andrej Karpathy写了一篇博文来测试他自己的表现。他的top-5 错误率是5.1%。 这篇教程将会教你如何使用Inception-v3。...我们也会讨论如何从模型中提取高层次的特征,在今后其它视觉任务中可能会用到。...如果你现有的产品中已经有了自己的图像处理框架,可以继续使用它,只需要保证在输入图像之前进行同样的预处理步骤。...实现迁移学习的方法之一就是移除网络的最后一层分类层,并且提取CNN的倒数第二层,在本例中是一个2048维的向量。

    1.5K40

    TensorFlow Lite在Kika Keyboard中的应用案例分享

    2017 年 5 月,Kika 技术团队基于 TensorFlow Mobile 研发了 Kika AI Engine,将其应用于 Kika 的全系输入法产品中。...在 Kika 将 TF Mobile 部署到移动端的过程中,除了 CPU 占用偏高,还有由于 TF Mobile 内存管理与内存保护设计的问题,导致: 内存保护机制不完善,在实际内存不是很充足的情况(尤其对于部分低端机型以及在内存消耗较大的应用...如何应对 op 缺失的情况 对于移动端用 TF Lite 部署最友好的开发姿势是在设计模型之处就了解当前的 TF Lite版本哪些 op 是缺失或者功能不完整的,然后在模型设计过程中: 尽量避免使用这些...补充的方式有两种: 直接开发一个全新的 op; 在 TF Lite 之外的上层 api 中实现 (此时可能需要拆解模型)。 两种方式各有优劣,具体的需要根据功能的复杂度和业务逻辑决定。...后续 Kika 技术团队将持续带来关于 Kika 在 TF Lite 和 TF Serving 实践中的经验分享。 ---- 声明:本文系网络转载,版权归原作者所有。如涉及版权,请联系删除!

    1.2K40
    领券