首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    自创数据集,使用TensorFlow预测股票入门

    本文所使用的数据集可以直接下载,所以有一定基础的读者也可以尝试使用更强的循环神经网络处理这一类时序数据。...S&P 500 股指时序绘图 预备训练和测试数据 该数据集需要被分割为训练和测试数据,训练数据包含总数据集 80% 的记录。该数据集并不需要扰乱而只需要序列地进行切片。...比较常见的错误就是在拆分测试和训练数据集之前缩放整个数据集。因为我们在执行缩放时会涉及到计算统计数据,例如一个变量的最大和最小值。...我们后面会定义控制每次训练时使用的批量大小 batch_size。 变量 除了占位符,变量是 TensorFlow 表征数据和运算的另一个重要元素。...我们很多客户都已经在使用 TensorFlow,或正在开发应用 TensorFlow 模型的项目。

    1.2K70

    自创数据集,使用TensorFlow预测股票入门

    本文所使用的数据集可以直接下载,所以有一定基础的读者也可以尝试使用更强的循环神经网络处理这一类时序数据。...S&P 500 股指时序绘图 预备训练和测试数据 该数据集需要被分割为训练和测试数据,训练数据包含总数据集 80% 的记录。该数据集并不需要扰乱而只需要序列地进行切片。...比较常见的错误就是在拆分测试和训练数据集之前缩放整个数据集。因为我们在执行缩放时会涉及到计算统计数据,例如一个变量的最大和最小值。...我们后面会定义控制每次训练时使用的批量大小 batch_size。 变量 除了占位符,变量是 TensorFlow 表征数据和运算的另一个重要元素。...我们很多客户都已经在使用 TensorFlow,或正在开发应用 TensorFlow 模型的项目。

    1.4K70

    【教程】使用TensorFlow对象检测接口标注数据集

    当为机器学习对象检测和识别模型构建数据集时,为数据集中的所有图像生成标注非常耗时。而这些标注是训练和测试模型所必需的,并且标注必须是准确的。因此,数据集中的所有图像都需要人为监督。...从这个数据集中训练一个简单的模型。 3. 使用这个简单的模型来预测新数据集图像的标注。 代码和数据请访问下方链接。本文假设你已经安装了TensorFlow Object Detection API。...这是Image Net使用的XML文件格式。而LabelImg程序可以用来生成和修改这种格式的标注。 ? 范例库中的数据目录显示了使用此方法生成的标注(如下链接)。...目标检测接口提供了关于调整和利用现有模型的自定义数据集的详细文档。...可以根据数据集和操作符的需要优化生成注释的阈值。合适的阈值应该在错误率与错过率之间找到平衡点。如果删除错误标注对于操作员而言比标注遗漏容易,那么应该使用较低的阈值。 下面是来自简易模型的三个预测。

    1.7K70

    教程 | 如何在TensorFlow中高效使用数据集

    在本文中,作者 Francesco Zuppichini 将教你使用 TensorFlow 的内建管道向模型传递数据的方法,从此远离「feed-dict」。...经常使用神经网络框架的人都会知道,feed-dict 是向 TensorFlow 传递信息最慢的方式,应该尽量避免使用。...概述 使用 Dataset 需要遵循三个步骤: 载入数据:为数据创建一个数据集实例。 创建一个迭代器:通过使用创建的数据集构建一个迭代器来对数据集进行迭代。...使用数据:通过使用创建的迭代器,我们可以找到可传输给模型的数据集元素。 载入数据 我们首先需要一些可以放入数据集的数据。...数据集教程:https://www.tensorflow.org/programmers_guide/datasets 数据集文档:https://www.tensorflow.org/api_docs

    1.5K80

    TensorFlow 数据集和估算器介绍

    TensorFlow 1.3 引入了两个重要功能,您应当尝试一下: 数据集:一种创建输入管道(即,将数据读入您的程序)的全新方式。 估算器:一种创建 TensorFlow 模型的高级方式。...结合使用这些估算器,可以轻松地创建 TensorFlow 模型和向模型提供数据: 我们的示例模型 为了探索这些功能,我们将构建一个模型并向您显示相关的代码段。...我们现在已经定义模型,接下来看一看如何使用数据集和估算器训练模型和进行预测。 数据集介绍 数据集是一种为 TensorFlow 模型创建输入管道的新方式。...map 函数将使用字典更新数据集中的每个元素(行)。 以上是数据集的简单介绍!...这是我们将数据集与估算器连接的位置!估算器需要数据来执行训练、评估和预测,它使用 input_fn 提取数据。

    88890

    教程 | 使用MNIST数据集,在TensorFlow上实现基础LSTM网络

    选自GitHub 机器之心编译 参与:刘晓坤、路雪 本文介绍了如何在 TensorFlow 上实现基础 LSTM 网络的详细过程。作者选用了 MNIST 数据集,本文详细介绍了实现过程。...长短期记忆(LSTM)是目前循环神经网络最普遍使用的类型,在处理时间序列数据时使用最为频繁。...我们的目的 这篇博客的主要目的就是使读者熟悉在 TensorFlow 上实现基础 LSTM 网络的详细过程。 我们将选用 MNIST 作为数据集。.../", one_hot=True) MNIST 数据集 MNIST 数据集包括手写数字的图像和对应的标签。...验证数据(mnist.validation):5000 张图像 数据的形态 讨论一下 MNIST 数据集中的训练数据的形态。数据集的这三个部分的形态都是一样的。

    1.5K100

    TensorFlow TFRecord数据集的生成与显示

    TensorFlow提供了TFRecord的格式来统一存储数据,TFRecord格式是一种将图像数据和标签放在一起的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储 等等...从TFRecords文件中读取数据, 可以使用tf.TFRecordReader的tf.parse_single_example解析器。...利用下列代码将图片生成为一个TFRecord数据集: import os import tensorflow as tf from PIL import Image import matplotlib.pyplot...将图片形式的数据生成多个TFRecord 当图片数据量很大时也可以生成多个TFRecord文件,根据TensorFlow官方的建议,一个TFRecord文件最好包含1024个左右的图片,我们可以根据一个文件内的图片个数控制最后的文件个数...将单个TFRecord类型数据集显示为图片 上面提到了,TFRecord类型是一个包含了图片数据和标签的合集,那么当我们生成了一个TFRecord文件后如何查看图片数据和标签是否匹配?

    6.8K145

    Tensorflow2.0实战之MNSIT数据集

    最近Tensorflow相继推出了alpha和beta两个版本,这两个都属于tensorflow2.0版本;早听说新版做了很大的革新,今天就来用一下看看 这里还是使用MNSIT数据集进行测试导入必要的库...import tensorflow as tf from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics...数据的准备 (xs, ys),_ = datasets.mnist.load_data() print('datasets:', xs.shape, ys.shape, xs.min(), xs.max...None, 28*28)) network.summary() optimizer = optimizers.SGD(lr=0.01) acc_meter = metrics.Accuracy() 对数据集进行迭代...1.X版本有顺手多了,感觉和pytorch差不多,使用起来更加的丝滑流畅,真的是对这个版本爱不释手了,如果要是再有一张性能好一些的显卡就更好了 [image.png] 欢迎关注公众号:陶陶name

    35130

    在C#下使用TensorFlow.NET训练自己的数据集

    今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理...具体每一层的Shape参考下图: 数据集说明 为了模型测试的训练速度考虑,图像数据集主要节选了一小部分的OCR字符(X、Y、Z),数据集的特征如下: · 分类数量:3 classes 【X...随机 翻转/平移/缩放/镜像 等预处理进行增强 · 整体数据集情况如下图所示: 在这里插入图片描述 在这里插入图片描述 代码说明 环境设置 · .NET 框架:使用.NET...完整代码可以直接用于大家自己的数据集进行训练,已经在工业现场经过大量测试,可以在GPU或CPU环境下运行,只需要更换tensorflow.dll文件即可实现训练环境的切换。...摆脱了以往Python下 需要通过Flask搭建服务器进行数据通讯交互 的方式,现场部署应用时无需配置Python和TensorFlow的环境【无需对工业现场的原有PC升级安装一大堆环境】,整个过程全部使用传统的

    1.5K20

    30个最大的机器学习TensorFlow数据集

    它是完整的初学者和经验丰富的数据科学家的端到端平台。TensorFlow库包括工具,预先训练的模型,机器学习指南以及一系列开放数据集。...为了帮助找到所需的训练数据,本文将简要介绍一些用于机器学习的最大TensorFlow数据集。将以下列表分为图像,视频,音频和文本数据集。 TensorFlow图像数据集 1....CelebA:Celebrity Faces Attributes Dataset(CelebA)是最大的可公开使用的人脸图像数据集,其中包含200,000多个名人图像。...https://www.tensorflow.org/datasets/catalog/yelp_polarity_reviews 尽管上面的数据集是用于机器学习的一些最大,使用最广泛的TensorFlow...数据集,但TensorFlow库却庞大且不断扩展。

    1.4K31

    如何为Tensorflow构建自定义数据集

    几个周末之后,已经建立了足够的勇气来承担一个小的编码挑战 - 为PCAP网络捕获文件实施新的Tensorflow数据集。...Tensorflow IO和源代码构建 https://github.com/tensorflow/io#developing 2.查看源树中的相邻数据集,并选择一个最接近pcap的数据集。...TF Graph示例 操作使用名为tensors的公共数据类型(因此名称为TensorFlow)。...张量的例子 它有助于理解 TF数据集的好处以及开箱即用的所有便利功能,如批处理,映射,重排,重复。这些功能使得使用有限数据量和计算能力构建和训练TF模型变得更加容易和高效。...TF IO pcap数据集的源代码目录结构 Tensorflow使用Bazel作为构建系统,Google于2015年开源。以下是PcapDataset BUILD文件。

    1.9K30
    领券