版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/u01...
Softmax回归本身就可以作为一个学习算法来优化分类结果,但在tensorflow中,softmax回归的参数被去掉了,它只是一层额外的处理层,将神经网络的输出变成一个概率分布。...以下代码展示了如何通过tensorflow实现均方误差函数。mse = tf.reduce_mean(tf.square(y_ - y))其中y代表了神经网络的输出答案,y_代表了标准答案。...2、自定义损失函数:tensorflow不仅支持经典的损失函数。还可以优化任意的自定义损失函数。下面介绍如何通过自定义损失函数的方法,使得神经网络优化的结果更加接近实际问题的需求。...,下面通过一个简单的神经网络程序来讲解损失函数对模型训练结果的影响。...通过这个样例可以感受到,对于相同的神经网络,不同的损失函数会对训练得到的模型产生重要影响。
损失函数在模型编译时候指定。对于回归模型,通常使用的损失函数是平方损失函数 mean_squared_error。...如果有需要,也可以自定义损失函数,自定义损失函数需要接收两个张量y_true,y_pred作为输入参数,并输出一个标量作为损失函数值。...import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import layers,models...self.gamma) * tf.log(1. - pt_0 + 1e-07)) return loss 参考: 开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2..._in_30_days/ GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days
损失函数定义 From Tensorflow - Losses: Losses The loss ops measure error between two tensors, or between...tf.nn.l2_loss tf.nn.log_poisson_loss 即: Losses 损失运算 用于测量两个张量之间或张量与0之间的误差。...tf.nn.log_poisson_loss l2_loss From tf.nn.l2_loss: tf.nn.l2_loss l2_loss( t, name=None ) Defined in tensorflow...实验源码 自己编写代码进行验证: import tensorflow as tf import numpy as np a = np.zeros(shape=[10, 5, 1], dtype=np.float32
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https:...softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html 这节讲解两个基础的损失函数的实现
在《神经网络中常见的激活函数》一文中对激活函数进行了回顾,下图是激活函数的一个子集—— 而在神经网络领域中的另一类重要的函数就是损失函数,那么,什么是损失函数呢?...对二分类,交叉熵损失的公式如下: 在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。...Polyloss 损失函数 Cross-entropy loss损失函数和 focal loss损失函数是深层神经网络分类问题训练中最常用的选择。...在孪生神经网络(siamese network)中,其采用的损失函数是contrastive loss,这种损失函数可以有效的处理孪生神经网络中的paired data的关系,形式上并不一定是两个Net...小结 在神经网络中,损失函数是神经网络的预测输出与实际输出之间差异的度量,计算当前输出和预期输出之间的距离。这是一种评估如何建模数据的方法,提供了神经网络表现如何的度量,并被用作训练期间优化的目标。
这次介绍怎样建造一个完整的神经网络,包括添加神经层,计算误差,训练步骤,判断是否在学习.本节内容,我们会在上一小节的基础上,继续讲解如何构建神经层。...import tensorflow as tfimport numpy as np构造添加一个神经层的函数。...所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。...搭建网络下面,我们开始定义隐藏层,利用之前的add_layer()函数,这里使用 Tensorflow 自带的激励函数tf.nn.relu。...机器学习的内容是train_step, 用 Session 来 run 每一次 training 的数据,逐步提升神经网络的预测准确性。
前言 本文将从损失函数的本质、损失函数的原理、损失函数的算法三个方面,详细介绍损失函数Loss Function。...损失函数 1、损失函数的本质 (1)机器学习“三板斧” 选择模型家族,定义损失函数量化预测误差,通过优化算法找到最小损失的最优模型参数。...示例:线性回归、逻辑回归、神经网络、决策时等。 考虑因素:问题的复杂性、数据的性质、计算资源等。 判断函数的好坏(损失函数) 目标:量化模型预测与真实结果之间的差异。...它是预测值与真实值之间差距的计算方法,并通过深度学习框架(如PyTorch、TensorFlow)进行封装。...损失曲线: 损失曲线直观地呈现了模型在训练过程中损失值的变化趋势。
3、神经网络的层数,通常用神经网络的层数和神经网络待优化的参数的个数 来表示,层数 = 隐藏层的层数 + 1个输出层,总参数 = 总W + 总b4、神经网络的优化四个方面:损失函数loss、学习率learning_rate...如预测商品销量,预测多了,损失成本;预测少了,损失利润。...也就是 损失函数示例代码:#coding=utf-8''' 用自定义损失函数 预测酸奶日销量'''# 酸奶成功1元,酸奶利润9元# 预测少了损失大,故不要预测少,故生成的模型会多预测一些# 导入模块...,生成数据集import tensorflow as tfimport numpy as npBATCH_SIZE = 8SEED = 23455COST = 1PROFIT = 9rdm = np.random.RandomState...(SEED)X = rdm.rand(32, 2)Y = [[x1 + x2 + (rdm.rand()/10.0 - 0.05)] for (x1, x2) in X]# 1定义神经网络的输入、参数、
文章目录 损失函数的类别: 专业名词中英文对照 损失函数的类别: 1.均方误差(MSE)、SVM的合页损失(hinge loss)、交叉熵(cross entropy) 2.相对熵 相对熵又称KL散度...直观来看那么0.82下降的速度明显高于0.98,但是明明0.98的误差更大,这就导致了神经网络不能像人一样,误差越大,学习的越快。 4.交叉熵是误差越大,下降速度越快。
TensorFlow2.0(1):基本数据结构——张量 TensorFlow2.0(2):数学运算 TensorFlow2.0(3):张量排序、最大最小值 TensorFlow2.0(4):填充与复制...TensorFlow2.0(5):张量限幅 TensorFlow2.0(6):利用data模块进行数据预处理 TensorFlow2.0(7):4种常用的激活函数 1 均方差损失函数:MSE...tf.reduce_mean(loss_mse_1) loss_mse_2 一般而言,均方误差损失函数比较适用于回归问题中...,对于分类问题,特别是目标输出为One-hot向量的分类任务中,下面要说的交叉熵损失函数就要合适的多。...2 交叉熵损失函数 交叉熵(Cross Entropy)是信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息,交叉熵越小,两者之间差异越小,当交叉熵等于0时达到最佳状态,也即是预测值与真实值完全吻合
tensorflow Regularizers 在损失函数上加上正则项是防止过拟合的一个重要方法,下面介绍如何在TensorFlow中使用正则项. tensorflow中对参数使用正则项分为两步:...函数返回一个标量Tensor,同时,这个标量Tensor也会保存到GraphKeys.REGULARIZATION_LOSSES中.这个Tensor保存了计算正则项损失的方法....tensorflow中的Tensor是保存了计算这个值的路径(方法),当我们run的时候,tensorflow后端就通过路径计算出Tensor对应的值 现在,我们只需将这个正则项损失加到我们的损失函数上就可以了...,或者weights的正则化损失就会被添加到GraphKeys.REGULARIZATION_LOSSES中....示例: import tensorflow as tf from tensorflow.contrib import layers regularizer = layers.l1_regularizer
前面 写了一篇用 TensorFlow 实现 CNN 的文章,没有实现 TensorBoard,这篇来加上 TensorBoard 的实现,代码可以从 这里 下载。...---- 什么是 TensorBoard To make it easier to understand, debug, and optimize TensorFlow programs, we’ve...上面是引用了官网的介绍,意思就是说 TensorBoard 就是一个方便你理解、调试、优化 TensorFlow 程序的可视化工具,你可以可视化你的 TensorFlow graph、学习参数以及其他数据比如图像...你可以使用 tf.summary.scalar 记录准确率、损失等数据,使用 tf.summary.histogram 记录参数的分布情况。...损失曲线: ? Graph: ? Step 100 的各节点计算时间(需要使用 tf.train.Saver()): ?
readme: 本文为中国大学MOOC课程《人工智能实践:Tensorflow笔记》的笔记中搭建神经网络,总结搭建八股的部分 目标:搭建神经网络,总结搭建八股 Tensorflow 搭建神经网络 分三篇完成...: 《Tensorflow 搭建神经网络 (一)》基本概念 《Tensorflow 搭建神经网络 (二)》神经网络的参数、神经网络搭建、前向传播 《Tensorflow 搭建神经网络 (三)》反向传播...、搭建神经网络的八股 如果你喜欢这篇文章,可以在文章底部的附件中下载Tensorflow笔记3.pdf格式文档 如果你想试着运行文中的代码,你需要搭建好环境。...image.png 一、基本概念 √基于 Tensorflow 的 NN:用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型。...√计算图(Graph): 搭建神经网络的计算过程,是承载一个或多个计算节点的一张图,只搭建网络,不运算。 举例 神经网络的基本模型是神经元,神经元的基本模型其实就是数学中的乘、加运算。
Post Views: 310 介绍 深度神经网络(Deep Neural Networks,DNN)可以理解为有很多隐藏层的神经网络,又被称为深度前馈网络,多层感知机。...本实验介绍深层神经网络在 TensorFlow 上的实现,并使用模型处理 MNIST 数据集。...理论知识回顾 一个两层的深层神经网络结构如下: 上图所示的是一个具有两层隐藏层的深层神经网络 第一个隐藏层有 4 个节点,对应的激活函数为 ReLu 函数 第一个隐藏层有 2 个节点,对应的激活函数也是...不一样 的是我们可以通过调整深度神经网络的层次来看看能不能达到不一样的效果。...as tf from tensorflow.examples.tutorials.mnist import input_data def add_layer(inputs, in_size, out_size
https://blog.csdn.net/haluoluo211/article/details/79704120 本文讲述使用tensorflow解决mnist分类问题: 使用一个隐藏层神经网络...784 * 10分类mnist 使用两个隐藏层神经网络784 * 300 * 10分类mnist 其中单层784 * 4隐藏层的网络构架如下图: ?...具体代码如下: # coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data...labels, logits=output)) # 梯度下降法,学习速率为0.5 optimizer = tf.train.GradientDescentOptimizer(0.5) # 训练目标:最小化损失函数.../tensorflow-mnist-beginner
今天我们会来聊聊在怎么样加速你的神经网络训练过程.包括以下几种模式:Stochastic Gradient Descent (SGD)MomentumAdaGradRMSPropAdam图片越复杂的神经网络..., 越多的数据 , 我们需要在训练神经网络的过程上花费的时间也就越多....可是往往有时候为了解决复杂的问题, 复杂的结构和大数据又是不能避免的, 所以我们需要寻找一些方法, 让神经网络聪明起来, 快起来.Stochastic Gradient Descent (SGD)¶图片所以...我们还有很多其他的途径来加速训练.Momentum 更新方法¶图片大多数其他途径是在更新神经网络参数那一步上动动手脚....所以说, 在加速神经网络训练的时候, 一个下坡, 一双破鞋子, 功不可没.【小结】如果觉得以上内容对你有帮助,欢迎点赞、收藏加关注。
前面 写了一篇用 TensorFlow 实现 CNN 的文章,没有实现 TensorBoard,这篇来加上 TensorBoard 的实现,代码可以从 这里 下载。...什么是 TensorBoard To make it easier to understand, debug, and optimize TensorFlow programs, we’ve included...上面是引用了官网的介绍,意思就是说 TensorBoard 就是一个方便你理解、调试、优化 TensorFlow 程序的可视化工具,你可以可视化你的 TensorFlow graph、学习参数以及其他数据比如图像...你可以使用 tf.summary.scalar 记录准确率、损失等数据,使用 tf.summary.histogram 记录参数的分布情况。...损失曲线: ? Graph: ? Step 100 的各节点计算时间(需要使用 tf.train.Saver()): ?
图神经网络 (GNN) 是一种神经网络,用于处理图数据结构中的数据。GNN 可用于回答有关各种图特征的查询。GNN 试图通过在图级别工作来预测完整图的属性。...TensorFlow 发布了TensorFlow Graph Neural Networks (TF-GNNs),这是一个旨在简化图结构数据处理的库。...TF-GNN 是一组用于开发 GNN 模型的 TensorFlow 构建组件。...近年来,图神经网络已经发展成为可以用图描述的每个问题的有效且有用的工具。有了 TensorFlow Graph 神经网络,全世界的程序员都可以非常方便地使用 Graphs。...Github: https://github.com/tensorflow/gnn 参考: https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html
目标:搭建神经网络,总结搭建八股 一、基本概念 1:基于 Tensorflow 的 NN: 用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型。...4:TensorFlow的计算图(Graph): 搭建神经网络的计算过程,是承载一个或多个计算节点的一 张图,只搭建网络,不运算。...前向传播过程的 tensorflow 描述: 举例 : 这是一个实现神经网络前向传播过程,网络可以自动推理出输出 y 的值。...损失函数(loss):计算得到的预测值 y 与已知答案 y_的差距 损失函数的计算有很多方法,均方误差 MSE 是比较常用的方法之一。...2:定义损失函数及反向传播方法 3.生成会话,训练 STEPS 轮 v2-b6c3a92706c5ba916c08274bf83e2069_hd.jpg 由神经网络的实现结果,我们可以看出,
领取专属 10元无门槛券
手把手带您无忧上云