首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

常用的像素操作算法:图像加法、像素混合、提取图像中的ROI

图像可以是看成是一个多维的数组。读取一张图片,可以看成是读入了一系列的像素内容。这些像素内容,按照不同的模式具有不同的格式。对于三通道的 RGB 位图来说,每个像素是一个 8-bit 整数的三元组。...图像的像素操作是比较基础的图像算法,下面列举三个常用的像素操作算法。 图像加法 图像的加法表示两个输入图像在同一位置上的像素相加,得到一个输出图像的过程。...ROI ROI(region of interest),表示图像中感兴趣的区域。...对于一张图像,可能我们只对图像中某部分感兴趣,或者要对目标进行跟踪时,需要选取目标特征,所以要提取图像的感兴趣区域。...像素操作是 cv4j 的基本功能之一,所有的像素操作算法都在Operator类中。

1.3K20

深度学习图像中的像素级语义识别

RoI层的输出roi_pool5接着输入到全连接层, 产生最终用于多任务学习的特征并用于计算多任务Loss。...全连接输出包括两个分支: 1.SoftMax Loss:计算K+1类的分类Loss函数,其中K表示K个目标类别。...(3) 基于上下文的场景分类: 这类方法不同于前面两种算法,而将场景图像看作全局对象而非图像中的某一对象或细节,这样可以降低局部噪声对场景分类的影响。...算法:基于Gist的场景分类 步骤: 通过 Gist 特征提取场景图像的全局特征。Gist 特征是一种生物启发式特征,该特征模拟人的视觉,形成对外部世界的一种空间表示,捕获图像中的上下文信息。...Gist 特征通过多尺度多方向 Gabor 滤波器组对场景图像进行滤波,将滤波后的图像划分为 4 × 4 的网格,然后各个网格采用离散傅里叶变换和窗口傅里叶变换提取图像的全局特征信息。

2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ​LeetCode刷题实战302:包含全部黑色像素的最小矩阵

    今天和大家聊的问题叫做 包含全部黑色像素的最小矩阵,我们先来看题面: https://leetcode-cn.com/problems/smallest-rectangle-enclosing-black-pixels...图片在计算机处理中往往是使用二维矩阵来表示的。 假设,这里我们用的是一张黑白的图片,那么 0 代表白色像素,1 代表黑色像素。...其中黑色的像素他们相互连接,也就是说,图片中只会有一片连在一块儿的黑色像素(像素点是水平或竖直方向连接的)。...那么,给出某一个黑色像素点 (x, y) 的位置,你是否可以找出包含全部黑色像素的最小矩形(与坐标轴对齐)的面积呢? ?...示例 示例: 输入: [ "0010", "0110", "0100" ] 和 x = 0, y = 2 输出: 6 解题 找最小矩形的面积,可以转化为找所有黑色像素的X, Y坐标极值,这个面积应该等于

    77120

    用python简单处理图片(4):图像中的像素访问

    前面的一些例子中,我们都是利用Image.open()来打开一幅图像,然后直接对这个PIL对象进行操作。如果只是简单的操作还可以,但是如果操作稍微复杂一些,就比较吃力了。...因此,通常我们加载完图片后,都是把图片转换成矩阵来进行更加复杂的操作。 python中利用numpy库和scipy库来进行各种数据操作和科学计算。...之后,就变成了一个rows*cols*channels的三维矩阵,因此,我们可以使用 img[i,j,k] 来访问像素值。...例2:将lena图像二值化,像素值大于128的变为1,否则变为0 from PIL import Image import numpy as np import matplotlib.pyplot as...如果要对多个像素点进行操作,可以使用数组切片方式访问。切片方式返回的是以指定间隔下标访问 该数组的像素值。

    2.2K20

    访问图像像素信息方式的优化

    如果你做图像处理有一定的经验,并且实战过N次,那么你一定知道代码优化对这个行业是多么的重要。今天,我们首先简单谈谈访问图像像素技术的优化。...4、图像的宽度为Width,每个像素占用的字节数用BytePerPixel变量表示,24位图像该变量的值为3,32位图像该变量的值为4. 首先我们看看如何访问24或32位图像的像素值。...首先,我们观察,在每行中出来了大量的重复计算:Y * Stride + X * BytePerPixel,我们应该只要计算一次他就可以,好的,接着改进: 1 For Y = 0 To Height -...Next 第二种表达方式更加突出了扫描行的大小并不一定等于图像宽度*每像素的占用的字节数,所以在每次扫描一行之后要注意补齐未处理的那部分。...有两个问题提醒大家注意: 1、图像处理算法中在正常情况下都是先按行处理,在进行列方向递增,这样做对于代码的优化有很大的好处,因为图像在内存的数据摆布也是一行接着一行的。

    94330

    AI科技:如何利用图片像素之间的像素度进行图像分割?

    自答:这篇文章首先通过一般的CAM方法生成分割seed cues(前面文章有介绍),然后利用这些seed cues中已经标记标签的pixel计算相似度标签,利用卷积神经网络提取图片每个像素的特征,计算这些特征之间的相似度...下图是生成的Seed cues(粉色和黑色区域是已确定标签区域): ?...第二步、生成语义相似度标签Semantic Affinity Labels (1)设定半径为5,计算像素周围的一个圆内的像素与该像素之间(pixel pair)的相似度标签W。 计算方法图解: ?...如图中所示,若pixel pair中有一个像素为未确定标签的像素,则忽略不考虑;若pixel pair中两个像素属于同一个类别则记为1,属于不同类别则记为0;如上图所示,存在于Foreground和Background...的pixel,为红色和黑色的点,存在于Netural的点为绿色。

    1.8K20

    像素级压缩感知图像融合的论文

    2012 一种基于小波稀疏基的压缩感知图像融合算法 针对图像小波分解系数特点,提出了一种基于双放射状采样模式的压缩传感域图像融合算法。...该算法首先通过双放射状采样模式获得待融合图像的小波稀疏域线性测量值; 然后利用一种简单的绝对值大融合规则直接在压缩感知域进行融合,最后通过最小全变分的方法重构融合图像。...2014 基于 DWT 的高频系数压缩感知图像融合 算法思想: 传统的基于 DWT 的压缩感知图像融合方法针对的是整个稀疏系数,由于小波系数的低频部分为非稀疏的,导致其压缩重构质量差。...2015 基于NSCT与DWT的压缩感知图像融合 非下采样轮廓波变换NSCT具有良好的各向异性,但其对细节信息捕捉能力较差,而 DWT 具有较强的多分辨率和局部化特性,能较好地分解出图像的细节信息, 通常在将图像进行融合之前...2013 Entropy Dependent Compressive Sensing based Image Fusion 通过计算熵来计算信息量的多少,与门限值比较之后再分配给相应的测量次数,融合是简单的绝对值最大原则

    1K70

    Python中GDAL绘制多波段图像的像素时间变化走势图

    在之前的文章Python GDAL绘制遥感影像时间序列曲线中,我们就已经介绍过基于gdal模块,对大量多时相栅格图像,批量绘制像元时间序列折线图的方法。...首先,我们导入了需要使用的库;其中,os用于处理文件路径和目录操作,random用于随机选择像素,matplotlib.pyplot则用于绘制图像。   ...其次,使用random.sample函数从像素索引的范围中随机选择num_pixels个像素的索引,并保存在pixel_indices列表中。...接下来,我们遍历并恢复pixel_indices中的每个像素索引,计算该像素在每个影像中的每个波段的时间序列数据,并存储在band_list_1、band_list_2列表中。   ...随后,我们即可绘制两个时间序列图,分别表示2个波段在不同影像日期上的数值。最后,我们将图像保存到指定的文件夹pic_folder中,命名规则为x_y,其中x与y分别代表像素的横、纵坐标。

    28120

    OpenCV4+OpenVINO实现图像的超像素

    微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 图像超像素 传统方式的图像超像素常见的方式就是基于立方插值跟金字塔重建。...OpenCV中对这两种方式均有实现,低像素图像在纹理细节方面很难恢复,从低像素图像到高像素图像是典型的一对多映射,如果找到一种好的映射关系可以尽可能多的恢复或者保留图像纹理细节是图像超像素重建的难点之一...而基于深度学习的超像素重新方式过程未知但是结果优于传统方式。在深度学习方式的超像素重建中,对低像素图像采样大感受野来获取更多的纹理特征信息。...OpenVINO中提供的单张图像超像素网络参考了下面这篇文章 https://arxiv.org/pdf/1807.06779.pdf 该网络模型主要分为两个部分 特征重建网络,实现从低分辨率到高分辨率的像素重建...模型文件 OpenVINO提供的模型是在这个模型基础上进行简化,计算量更低,速度更快。

    1K10

    为什么像素级是图像标注的未来?

    计算机视觉行业应该继续使用边界框注释吗? 在这篇文章中,我将分享一些与我在博士研究期间积累的图像注释相关的想法。 具体来说,我将讨论当前最先进的注释方法,它们的趋势和未来方向。...最后,我将简要介绍我们正在构建的注释软件,并对我们的公司进行一些简单叙述。 大纲: 图像标注简介 主流注释方法:边界框 图像标注中的像素精度 1.图像标注简介 ?...图像注释是选择图像中的对象并按照名称标记它们的过程。 这是人工智能计算机视觉的支柱,例如为了让您的自动驾驶汽车软件准确识别图像中的任何物体,比如行人,需要数十万到数百万注释行人。...其他用例包括无人机/卫星镜头分析,安全和监视,医学成像,电子商务,在线图像/视频分析,AR / VR等。 图像数据和计算机视觉应用的增加需要大量的训练数据。...边界框如何失败的示例:绿色框 - 高度遮挡的行人的情况。 红色框 - 高噪声注释 3.图像注释中的像素精度 带有边界框的上述问题可以通过像素精确注释来解决。

    1.1K40

    Android图像处理-像素化的原理及实现

    作者:夏正冬 原文地址:Android图像处理-像素化的原理及实现 博客地址:xiazdong.github.io 马赛克算法首先需要确定马赛克单元的大小,即小方块的大小。...马赛克图的每个马赛克单元都是纯色的块,其取值一般为原图中该块区域的颜色的均值(这里的实现为了简化,取了原图中该区域左上角的像素)。马赛克单元的大小决定了最后的马赛克图的样子,当值为1时,就是原图。...上图中,最左边的图是原图,中间的图是马赛克图。当然你也可以对图像的某块区域打马赛克,如最右边的图,他只对头部打马赛克。...算法实现如下: public class PixelateUtil { / 普通图像->像素图,zoneWidth为像素图的大像素的宽度 / public static...,它能够异步对整个或者部分的Bitmap区域打马赛克,处理完后会在OnPixelateListener的onPixelated()中回调,最小的SDK版本为16。

    2.2K10

    为什么像素级是图像标注的未来?

    最后,我将简要介绍我们正在构建的注释软件,并对我们的公司进行一些简单叙述。 大纲: 图像标注简介 主流注释方法:边界框 图像标注中的像素精度 1.图像标注简介 ?...图像注释是选择图像中的对象并按照名称标记它们的过程。 这是人工智能计算机视觉的支柱,例如为了让您的自动驾驶汽车软件准确识别图像中的任何物体,比如行人,需要数十万到数百万注释行人。...其他用例包括无人机/卫星镜头分析,安全和监视,医学成像,电子商务,在线图像/视频分析,AR / VR等。 图像数据和计算机视觉应用的增加需要大量的训练数据。...边界框如何失败的示例:绿色框 - 高度遮挡的行人的情况。 红色框 - 高噪声注释 3.图像注释中的像素精度 带有边界框的上述问题可以通过像素精确注释来解决。...然而,深度学习算法在过去七年中取得了长足的进步。 虽然在2012年,最先进的算法(Alexnet)只能对图像进行分类,但是当前算法已经可以在像素级别准确识别对象(参见下图)。

    81230

    浅谈计算机视觉中的图像标注

    计算机视觉的应用非常广泛,从自动驾驶汽车和无人机到医疗诊断技术和面部识别软件,计算机视觉的应用是巨大的和革命性的。 图像标注 图像标注是计算机视觉的一个子集,是计算机视觉的重要任务之一。...图像标注就是将标签附加到图像上的过程。这可以是整个图像的一个标签,也可以是图像中每一组像素的多个标签。这些标签是由人工智能工程师预先确定的,并被选中为计算机视觉模型提供图像中所显示的信息。...与边界框一样,带注释的边缘内的像素也将被标记为描述目标对象的标签。 5)、 语义分割 边界盒、长方体和多边形都处理在图像中标注单个对象的任务。而语义分割则是对图像中每一个像素的进行标注。...图像标注的实际应用领域 1)、人脸识别 图像标注的一个常见应用是面部识别。它包括从人脸图像中提取相关特征,以区分图像中的人和物体。...5)、机器人 图像标注的主要应用之一是机器人技术,它帮助机器人区分周围环境中的各种物体。

    3.5K40

    计算机视觉|图像中的信息识别

    1.为什么需要电脑对图片中的数字和字将进行识别: 在生活中,很多时候需要识别一些图片中的数字和字母,就像很多网站的验证码识别,对于个人来说,单个的此类事件需要的时间和精力很少,可对于一些机构、企业来说,...2. python 实现的原理和步骤: 2.1环境搭建: 需要python安装opcv、numpy、pil和pytesseract这几个第三方库; 2.2基本原理介绍: 通过图像的预处理操作后,再将读取出来的数组转换成...2.3方法步骤简介: 首先是图片的预处理操作,一般顺序为先进行图像的二值化,之后再对图片进行数字形态学运算(主要是开运算),由于pytesseract内置函数识别的图片是image形式而不是opencv...中的多维数组形式,所以在识别之前需要先使用pil中的image函数将图片格式进行转换,最后再通过pytesseracr中的函数进行识别。...COLOR_BGR2GRAY) #二值化图像: ret, binary = cv. threshold(gray, 0 ,255, cv.

    67720

    【从零学习OpenCV 4】两图像间的像素操作

    前面介绍的计算最值、平均值等操作都是对一张图像进行处理,接下来将介绍两张图像间像素的相关操作,包含两张图像的比较运算、逻辑运算等。...1 01 两张图像的比较运算 OpenCV 4中提供了求取两张图像每一位像素较大或者较小灰度值的max()、min()函数,这两个函数分别比较两个图像中每一位元素灰度值的大小,保留较大(较小)的灰度值...在了解函数用法之前,我们先了解一下图像像素逻辑运算的规则。图像像素间的逻辑运算与数字间的逻辑运算相同,具体规则在图3-12中给出。...像素的非运算只能针对一个数值进行,因此在图3-12中对像素求非运算时对图像1的像素值进行非运算。...为了更加直观的理解两个图像像素间的逻辑运算,在代码清单3-16中给出两个黑白图像像素逻辑运算的示例程序,最后运行结果在图3-13中给出。

    93310

    CV中的IOU计算(目标检测与图像分割)

    今天给大家带来两道纯工程的题,是一位博士在面试face++时,被问到的。 看文章之前,别忘了关注我们,在我们这里,有你所需要的干货哦! 百面计算机视觉汇总链接 《百面计算机视觉汇总,看过来!》 1....目标检测中的IOU 假设,我们有两个框, 与 ,我们要计算其 。其中 的计算公式为,其交叉面积 除以其并集 。 ?...图被分成四个部分,其中大块的白色斜线标记的是 (TN,预测中真实的背景部分),红色线部分标记是 ( ,预测中被预测为背景,但实际上并不是背景的部分),蓝色的斜线是 ( ,预测中分割为某标签的部分...同样的, 计算公式: ?...总结 对于目标检测,写 那就是必考题,但是我们也要回顾下图像分割的 怎么计算的。 其它干货 算法岗,不会写简历?我把它拆开,手把手教你写! (算法从业人员必备!)Ubuntu办公环境搭建!

    3.1K50

    【Android 内存优化】Bitmap 图像尺寸缩小 ( 考虑像素密度、针对从不同像素密度资源中解码对应的 Bitmap 对象 | inDensity | inTargetDensity )

    地址 一、像素密度对解码图片的影响 ---- 在之前讲内存占用的博客中 【Android 内存优化】Bitmap 内存占用计算 ( Bitmap 图片内存占用分析 | Bitmap 内存占用计算 |..., 这里不再详述 ; Bitmap 解码尺寸计算公式如下 : 加载到内存中的宽或高像素值 = 实际宽或高像素值 \times \dfrac{本机像素密度}{图片存放的目录对应的像素密度} 二、不考虑像素密度会导致图片缩小尺寸不准确...62 x 32 ; 如果从真实的图像解码 , 会将像素密度解码考虑进去 , 这里从 mdpi 资源中解码图片 , 实际的解码出来的大小是 5224 x 2678 , 如果将该值缩小 32 倍 , 肯定无法到达宽高都小于...中设置的值 ; ① inDensity 像素密度值 : 设置该值会导致被返回的图像会被强制设置一个像素密度值 , 相当于设置了图片来自于哪个像素密度的资源 ; ② inTargetDensity 目标像素密度值..., 返回较小的 Bitmap 对象 ; 样本个数 : 样本的大小是在两个维度计算的像素个数 , 每个像素对应一个解码后的图片中的单独的像素点 ; 样本个数计算示例

    2.5K20
    领券