首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python实现所有算法-牛顿-拉夫逊(拉弗森)方法

这个不是二分法,但是差不多的意思,不过这个是牛顿法,也叫牛顿-拉夫逊(拉弗森)方法,就我的题目。 这篇文章的下面就讲讲这个东西: 它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。...牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程 f(x)=0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。 牛!...二、建立迭代关系式 所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。...此处所指的辅助方程是指为了使原方程的根是一个定点并使迭代值能更快地收敛到这些定点而设计的一个方程,因此迭代值的极限是这个辅助方程的一个定点。 求根算法的性能是数值分析的研究范畴。...然而,对于多项式,存在特定的使用代数学性质以定位根的所在区间(或复根所在的圆盘)的算法,这个区间(或圆盘)足够小以能保证数值算法(例如牛顿法)能收敛到唯一被定位的根。

55630

C语言实现牛顿迭代法解方程

C语言实现牛顿迭代法解方程 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,我们可以确定至少存在一个可直接或间接地不断由旧值递推出新值的变量,...二、建立迭代关系式 所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。...这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。...接下来,我介绍一种迭代算法的典型案例----牛顿-拉夫逊(拉弗森)方法 牛顿-拉夫逊(拉弗森)方法,又称牛顿迭代法,也称牛顿切线法:先任意设定一个与真实的根接近的值x0作为第一次近似根,由x0求出f...我们来看一副从网上找到的图: ? 例子:用牛顿迭代法求下列方程在值等于2.0附近的根:2x3-4x2+3x-6=0。

3.6K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ML算法——最优化|凸优化随笔【机器学习】【端午节创作】

    在推导过程的步骤4.中,谈到的牛顿迭代公式是如何代入得切线曲率?...使用牛顿-拉夫森方法(Newton-Raphson method)来求解 α,即: α = \frac{f'(x_k)}{f''(x_k)} 将 α 代入牛顿迭代公式中,得到: x_{k+1} = x_k...牛顿法迭代公式中没有步长因子,是定步长迭代。...其中, H_k为海森矩阵(Hessen) ,每个点处x=(x1,x2,x3,…,xn),都要计算一次: g_k为一阶导数 2.4、拟牛顿法 1)较牛顿法的改进?...2)拟牛顿法算法过程 图片 图片 图片 2.5、总结 重点是梯度下降法,利用一阶导数,而二阶导数涉及到海森矩阵,具有较大的计算量,因此,往往采用梯度下降算法。

    30311

    Python实现所有算法-K-means

    Python实现所有算法-二分法 Python实现所有算法-力系统是否静态平衡 Python实现所有算法-力系统是否静态平衡(补篇) Python实现所有算法-高斯消除法 Python实现所有算法-牛顿...-拉夫逊(拉弗森)方法 Python实现所有算法-雅可比方法(Jacobian) Python实现所有算法-矩阵的LU分解 Python实现所有算法-牛顿前向插值 Python实现所有算法-正割法(Secant...) Python实现所有算法-牛顿优化法 Python实现所有算法-音频过滤器.上 Python实现所有算法-音频过滤器.下(巴特沃斯) K-means 算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标...,cosθ越接近 1 个体越相似,可以修正不同度量标准不统一的问题; (3) K-means 算法获得的是局部最优解,在算法中,初始聚类中心常常是随机选择的,一旦初始值选择的不好,可能无法得到有效的聚类结果...),即所有样本的聚类误差(累计每个簇中样本到质心距离的平方和),随着 K 的增大每个簇聚合度会增强,SSE 下降幅度会增大,随着 K 值继续增大 SSE 的下降幅度会减少并趋于平缓,SSE 和 K 值的关系图会呈现成一个手肘的形状

    40010

    非线性|弧长法改进

    用第 个迭代步的增量向量 垂直于 个迭代步的迭代向量 个迭代步的迭代(累积)向量为: 第 个迭代步的增量向量为: 这里荷载增量 手动给出,再由牛顿-拉夫逊方法得到 ....令 Ⅱ 可得到 弧长法通过自动建立适当的荷载增量进一步优化了牛顿-拉夫逊方法,使用弧长法,可以跟踪复杂的荷载-变形路径。...弧长法通过自动建立适当的荷载增量进一步优化了牛顿-拉夫逊方法,使用弧长法,可以跟踪复杂的荷载-变形路径。...弧长法通过自动建立适当的荷载增量进一步优化了牛顿-拉夫逊方法,使用弧长法,可以跟踪复杂的荷载-变形路径。...弧长法通过自动建立适当的荷载增量进一步优化了牛顿-拉夫逊方法,使用弧长法,可以跟踪复杂的荷载-变形路径。

    1K10

    应对PyTorch中的TypeError: ‘module‘ object is not callable

    应对PyTorch中的TypeError: ‘module’ object is not callable 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...引言 在深度学习开发过程中,PyTorch是一个非常受欢迎的框架。...TypeError: 'module' object is not callable 是一个常见的Python错误,表示你尝试调用一个模块,但实际上应该调用模块中的一个函数或类。...如何解决TypeError 3.1 正确调用模块中的函数或类 确保你调用的是模块中的具体函数或类,而不是模块本身。...表格总结 方法 描述 正确调用函数或类 确保调用的是具体的函数或类 检查导入方式 确认导入方式正确 使用别名 为模块或函数使用别名以避免混淆 未来展望 在未来的工作中,我们可以继续探索更多的深度学习技术

    18610

    非线性 | 弧长法(Arc-Length Methods)

    图1所示为弧长法求解过程,若以下标 表示第 个荷载步,上标 表示第 个荷载步下的第 次迭代,显然,当荷载增量 ,则迭代路径为一条水平直线,即为著名的牛顿-拉夫逊方法。...对于图2所示的求解问题,牛顿-拉夫逊方法不能跨过极值点得到完整的荷载-位移曲线。因此,弧长法最重要的就是求荷载增量。...而弧长法的荷载增量 是变化的,可自动控制荷载,这样在原方程组的基础之上又增加了一个未知数,因此需要额外补充一个方程。...如图3所示,某一荷载步迭代至收敛时总有 考虑系统方程组 在迭代过程中, 逐渐趋于0,如果这两个值都为0,则说明该荷载步的迭代已收敛。...在上一个迭代收敛点(如图1中的 )将 作一阶泰勒展开 即 令 Ⅱ , 则 弧长法通过自动建立适当的荷载增量进一步优化了牛顿-拉夫逊方法,使用弧长法,可以跟踪复杂的荷载-变形路径。

    4.5K10

    概率论--最大似然估计

    信息论:在信息论中,MLE 可以用来估计信道参数和信号处理中的其他相关问题。 金融市场预测:在金融领域,MLE 被用于时间序列分析和回归分析中的参数估计。...最大化似然函数:通过选择合适的优化算法(如牛顿-拉夫森法、梯度上升法等),求解使得似然函数最大化的参数值。 模型验证:利用估计得到的参数进行模型拟合,并通过残差分析、信息准则等方法验证模型的有效性。...回归分析中的应用 在回归分析中,MLE同样用于估计线性和非线性回归模型的参数。例如,在多重线性回归模型中,可以通过MLE来估计系数向量a0,从而得到一个优化的回归方程。...牛顿-拉夫森法(Newton-Raphson): 效率:牛顿-拉夫森法利用二阶导数信息进行优化,因此收敛速度快,但计算复杂度较高。...拟牛顿法(Quasi-Newton Methods): 效率:拟牛顿法如BFGS和L-BFGS等方法不需要计算二阶导数,而是通过近似更新Hessian矩阵,从而降低了计算复杂度。

    24710

    机器学习中牛顿法凸优化的通俗解释

    牛顿法凸优化 上一部分介绍牛顿法如何求解方程的根,这一特性可以应用在凸函数的优化问题上。 机器学习、深度学习中,损失函数的优化问题一般是基于一阶导数梯度下降的。...第一,牛顿法的迭代更新公式中没有参数学习因子,也就不需要通过交叉验证选择合适的学习因子了。第二,牛顿法被认为可以利用到曲线本身的信息, 比梯度下降法更容易收敛(迭代更少次数)。...我们注意到牛顿法迭代公式中除了需要求解一阶导数之外,还要计算二阶导数。...但是,当数据量很大,特别在深度神经网络中,计算 Hessian 矩阵和它的逆矩阵是非常耗时的。从整体效果来看,牛顿法优化速度没有梯度下降算法那么快。...总的来说,基于梯度下降的优化算法,在实际应用中更加广泛一些,例如 RMSprop、Adam等。但是,牛顿法的改进算法,例如 BFGS、L-BFGS 也有其各自的特点,也有很强的实用性。

    86210

    非线性| 弧长法算例

    接下来的荷载步以 开始。 ?...第一迭代步采用牛顿-拉夫逊方法 第二迭代步 弧长法 Ⅱ 在每一个随后的子步计算时,一个新的弧长半径会首先被计算出来,该计算是基于上一子步的弧长半径和求解状况而开展的。...随后,这个新计算出的弧长半径将进一步被修正,以保证该半径处于上下限之内。当用最小半径也无法收敛时,弧长法将会自动停止。...0.00024355 5 4.8669E-08 1.07363526 3.978311405 9.1393E-09 弧长法通过自动建立适当的荷载增量进一步优化了牛顿-拉夫逊方法,使用弧长法,可以跟踪复杂的荷载...弧长法通过自动建立适当的荷载增量进一步优化了牛顿-拉夫逊方法,使用弧长法,可以跟踪复杂的荷载-变形路径。

    1.3K30

    非线性概述

    在结构变形过程中,结构刚度一般会发生变化。在结构变形不太大时,结构刚度变化不大,采用线性近似可得到工程应用可接受的结果,此即为线性求解。...非线性问题的特点 解的不唯一性 在给定的外荷载作用下,可以有一个解,或者多个解。 ? 结果不可放缩 在外力 作用下发生位移 ,由此并不能推出外力 作用下,发生的位移为 。...结果不可叠加 在外力 , 作用下发生的位移 , ,由此并不能推出外力 作用下,发生的位移为 。...结果与载荷路径有关 屈曲分析的解与载荷路径有关 非线性问题求解方法 将施加的荷载分解为多个增量步,采用牛顿-拉夫逊法逐步求解。牛顿-拉夫逊法的特点: 无条件收敛。...计算精度不受增量步的影响。 ? ▲牛顿-拉夫逊法

    89310

    牛顿迭代法的可视化详解

    牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。...在几何上可以将其视为 x 的值,这时函数与 x 轴相交。 Newton-Raphson 算法也可以用于一些简单的事情,例如在给定之前的连续评估成绩的情况下,找出预测需要在期末考试中获得 A 的分数。...2、如果我们达到一定数量的猜测但仍未达到阈值,那么我们就放弃继续猜测。 从公式中我们可以看到,每一个新的猜测都是我们之前的猜测被某个神秘的数量调整了。...Newton-Raphson 算法的前几个猜测在下面的 GIF 中可视化 我们最初的猜测是 x=10。为了计算我们的下一个猜测,我们需要评估函数本身及其在 x=10 处的导数。...在 10 处求值的函数的导数只是简单地给出了该点切线曲线的斜率。该切线在 GIF 中绘制为 Tangent 0。 看下一个猜测相对于前一个切线出现的位置,你注意到什么了吗?

    61510

    Waymo冰火两重天:无人出租车最快今秋推出,高管团队嫌隙严重

    多尔戈夫是谷歌最初无人驾驶汽车项目“Chauffeur”的一部分,该项目最终发展成为了Waymo。另一方面,克拉夫西克曾是现代和福特的高管,接替了此前的项目负责人乌尔姆森(Chris Urmson)。...乌尔姆森已经从谷歌离职,成立了一家与Waymo有竞争关系的公司。 自乌尔姆森离职后,多尔戈夫在公司内部扮演了更加活跃、更加公开的角色。...尽管表面上看有些紧张,但在无人驾驶汽车的开发过程中,Waymo正处于领先地位。消息人士表示,Waymo最初的共享出行服务预计最快将于本月在凤凰城地区展开运营。...争执 Waymo工程师团队和克拉夫西克之间的矛盾已经积累了一段时间。去年夏季,Waymo曾举行全体员工大会,讨论乌尔姆森的离职。...克拉夫西克需要回答员工匿名提交的问题,即为何他能比乌尔姆森更好地领导这方面的工作。他表示,他被聘请领导这支团队,且没有参与到谷歌创始人在公司外部寻找人选的决策中。乌尔姆森则没有对这篇报道置评。

    62930

    Python实现所有算法-牛顿前向插值

    -拉夫逊(拉弗森)方法 Python实现所有算法-雅可比方法(Jacobian) Python实现所有算法-矩阵的LU分解 今天的算法是插值,细分是牛顿插值。...理论就这么多了(其实也没有理论就是说下基本的概念) 牛逼的插值算法来自: 《自然哲学的数学原理》的第三卷的引理五 对牛顿插值来说,它最大的特点是引入了差商这个概念。...二阶的前向差分后和后向差分都在这里了 牛顿插值作为一种常用的数值拟合方法,因其计算简单,方便进行大量插值点的计算。...牛顿真厉害啊,几百年前他万万没有想到,一个小辈大晚上的还得研究人家随手写的东西。...牛顿插值算法的优点是,每一个新项的生成都不需要庞大的算力,对前一项进行计算就行,拉格朗日的算法是每一个新项都需要对基函数完全计算,耗费算力。

    1K10

    二阶牛顿插值在图像缩放中的应用

    二阶牛顿插值作为一种有效的插值方法,因其在保持图像边缘清晰度和减少模糊效应方面的优势而被广泛应用于图像缩放中。本文将详细介绍二阶牛顿插值的基本原理、在图像缩放中的应用方法以及其效果评估。 1....随着数字图像处理技术的发展,对图像缩放质量的要求也越来越高。二阶牛顿插值因其在处理图像时能够较好地保持边缘特征和减少细节模糊,成为了图像缩放中的一个研究热点。 2....通过这些差分,牛顿插值能够提供一个多项式,该多项式不仅通过所有已知点,而且能够预测中间值。 3. 二阶牛顿插值在图像缩放中的应用 在图像缩放中,二阶牛顿插值可以用于计算新像素点的值。...对于目标像素点 ,根据其在水平方向上映射到原始图像中的位置,选择邻域内相关性最大的一组源像素点,通过二阶牛顿插值算法计算水平方向的目标像素值。...参考文献 基于二阶牛顿插值的图像自适应缩放设计及实现 牛顿插值法在图像处理中的运用 一种基于牛顿二阶插值的图像缩放方法与流程

    8810

    个推CTO安森:我所理解的数据中台

    作者 | 个推CTO安森 来源 | 个推技术学院(ID:ID: getuitech) 引言 在前面两篇文章(《数据智能时代来临:本质及技术体系要求》和《多维度分析系统的选型方法》)之中,我们概括性地阐述了对于数据智能的理解...不过,计划不如变化快,最近这段时间“数据中台”这个词非常热,有人问了我两个问题:“数据中台”与这个系列的核心“数据智能的技术体系”有什么区别?你们是怎么理解“数据中台”这个概念的呢?...总结而言,数据中台是练出来的,即数据的复用率决定了数据中台的成功与否。一个数据中台的成功意味着不少数据都在进行着重复使用。...所以我们认为,更有价值的中台是业务偏向的数据中台,而不是通用型的数据中台。这个观点,和前阿里数据委员会主席车品觉是一致的。...安森,个推CTO 毕业于浙江大学,现全面负责个推技术选型、研发创新、运维管理等工作,已带领团队开发出针对移动互联网、风控等行业的多项前沿数据智能解决方案。

    46820

    Python实现所有算法-牛顿优化法

    -拉夫逊(拉弗森)方法 Python实现所有算法-雅可比方法(Jacobian) Python实现所有算法-矩阵的LU分解 Python实现所有算法-牛顿前向插值 兄弟们!...在微积分中,牛顿法是一种迭代方法,用于求可微函数F的根,它是方程F ( x ) = 0的解。...剩下的问题就和第一部分提到的牛顿法求解很相似了。...为了求解f'=0的根,把f(x)的泰勒展开,展开到2阶形式: 当且小三角无限趋于0 的时候 这个成立 我们的最终迭代公式就出来了 值得更新公式 牛顿法用于函数最优化求解”中对函数二阶泰勒公式展开求最优值的方法称为...:Newton法, 牛顿法用于方程求解”中对函数一阶泰勒展开求零点的方法称为:Guass-Newton(高斯牛顿)法。

    87930
    领券