[字符列表]将模式中的一组字符与中的一个字符进行匹配,可以包含任何一种字符,包括数字。...H-N]与字符H-N范围之外的所有字符匹配;而在[]外使用!号则只匹配!自身。 10.要使用任何特殊字符作为匹配字符,只需将它放在[]中即可,例如[?]表明要与一个问号进行匹配。...、数字符号 (#)和星号(*) 等特殊字符进行匹配,可以将它们用方括号括起来。不能在一个组内使用右括号 (]) 与自身匹配,但在组外可以作为个别字符使用。...示例1:基本用法 下面的代码演示了Like运算符的基本使用: Sub testLikePattern() Dim bLike1 As Boolean Dim bLike2 As Boolean...T*" End Sub 示例2:自定义字符比较函数 下面是一个简单的自定义函数IsLike: '摘自Excel高级VBA编程宝典 Function IsLike(text As String, _
面对这种情况,我们可以通过添加辅助列,然后基于辅助列进行排序。...1 单条件排序 单元格C2内的公式:TEXT(MID(B2,10,4),"0000") 通过录制宏的方式,得到sort排序的VBA代码,整理之后,记录如下: Sub 单条件排序()...SortMethod = xlPinYin .Apply End With End Sub (1)上述代码的功能是,基于辅助列(C列),对2至6行进行升序排列...the sort. 2 多条件排序 单元格C2内的公式:MID(B2,11,1) 单元格D2内的公式:TEXT(MID(B2,12,4),"0000") 通过录制宏的方式,得到sort排序的VBA...SortMethod = xlPinYin .Apply End With End Sub 上述代码的功能是,基于辅助列(C列和D列),对2至8行进行升序排列
标签:VBA 如果要在Excel工作表中针对相应数据进行线性插值计算,使用VBA如何实现? 如下图1所示,有3个值,要使用这3个值进行线性插值。 图1 结果如下图2所示。...图2 可以使用下面的VBA代码: Sub LinInterp() Dim rKnown As Range '已知数值的区域 Dim rGap As Range '插值区域 Dim dLow As...之所以分享这个示例,主要是其使用了SpecialCells方法来获取相应的单元格组织单元格区域,有兴趣的朋友可以好好体会。 注:本文代码收集自.vbaexpress.com,供参考。
标签:VBA Excel一直在改进自动筛选功能。可能和许多开发人员一样,当设置了条件,Excel为你进行数据筛选时,Excel会进行循环。...相比之下,在VBA中使用自动筛选速度非常快,小列表和大列表之间的时间差可以忽略不计。同时,Excel引入了按图标集筛选的功能,即单元格中显示的条件格式彩色箭头或图表指示器,如下图1所示。...如果试图将此代码改编为外观不同的图标集,则需要获取与使用的图标集相关的索引号。VBA代码-Item(1)与红色向下箭头相关,(2)与黄色箭头相关,(3)与绿色箭头相关。 过程效果如下图2所示。...图3 该图标集的编号是5,相应的VBA代码如下: Sub RedDownArrowV2() '红色 [K10:K100].AutoFilter 1, ThisWorkbook.IconSets(
背景 图像相比文字能够提供更加生动、容易理解及更具艺术感的信息,是人们转递与交换信息的重要来源,也是图像识别领域的一个重要问题,图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题...图像分类在很多领域有广泛应用,包括安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。...一般来说,图像分类通过手工特征或特征学习方法对整个图像进行全部描述,然后使用分类器判别物体类别,因此如何提取图像的特征至关重要。...但是如果靠自己实现一个图像识别算法是不容易的,我们可以使用ImageAI来完成这样一个艰巨的任务。...技术方案 使用云函数实现,详细步骤如下: 在云控制台新建python云函数模板 编写代码,实现如下: from imageai.Prediction import ImagePrediction import
后者,则直接训练一个多标签的分类器,所使用的标签为0,1,0,0…这样的向量,使用hanmming距离等作为优化目标。 类别不平衡问题 在很多情况下,可能会遇到数据不平衡问题。数据不平衡是什么意思呢?...欠采样:对数据量大的类别进行采样,降低二者的不平衡程度。 数据扩充:对数据量小的类别进行扩充。...图像分类模型 提升分类模型精度的方法 数据扩充(数据增强) 深度学习依赖于大数据,使用更多的数据已被证明可以进一步提升模型的精度。...随着扩充的处理,将会免费获得更多的数据,使用的扩充方法取决于具体任务,比如,你在做自动驾驶汽车任务,可能不会有倒置的树、汽车和建筑物,因此对图像进行竖直翻转是没有意义的,然而,当天气变化和整个场景变化时...,对图像进行光线变化和水平翻转是有意义的。
1,分Window进行Transformer计算,将自注意力计算量从输入尺寸的平方量级降低为线性量级。 2,使用Shift Window 即窗格偏移技术 来 融合不同窗格之间的信息。...(SW-MSA) 3,使用类似七巧板拼图技巧 和Mask 技巧 来对 Window偏移后不同大小的窗格进行注意力计算以提升计算效率。...5,使用Patch Merging技巧来 实现特征图的下采样,作用类似池化操作但不易丢失信息。 6,使用不同大小的Window提取不同层次的特征并进行融合。...SwinTransformer这个backbone结构表达能力非常强,同时适用性广泛,可适用于图片分类,分割,检测等多种任务,而且结构设计和实验工作都做得比较touch,所以被评为了2021年的ICCV...下面的范例我们微调 timm库中的 SwinTransformer模型来 做一个猫狗图片分类任务。
使用CNN进行图像分类是很稀疏平常的,其实使用RNN也是可以的. 这篇介绍的就是使用RNN(LSTM/GRU)进行mnist的分类,对RNN不太了解的可以看看下面的材料: 1....RNN进行mnist的分类呢?...当我们得到最终的输出的时候将其做一次线性变换就可以加softmax来分类了,其实挺简单的....定义网络 我们使用3层的GRU,hidden units是200的带dropout的RNN来作为mnist分类的网络,具体代码如下: cells = list() for _ in range(num_layers...训练和测试 分类嘛,还是使用cross entropy作为loss,然后计算下错误率是多少,代码如下: batch_size = 64, lr = 0.001 # placeholders input_x
图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉中重要的基础问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础,在许多领域都有着广泛的应用。...这里将介绍如何在PaddlePaddle下使用AlexNet、VGG、GoogLeNet、ResNet、Inception-v4、Inception-ResNet-v2和Xception模型进行图像分类...AlexNet、VGG、GoogLeNet、ResNet、Inception-v4、Inception-ResNet-v2和Xception模型中的一个模型进行图像分类。...使用GoogLeNet模型 GoogLeNet在训练阶段使用两个辅助的分类器强化梯度信息并进行额外的正则化。...代码使用paddle.infer判断image_list_file中每个图像的类别,并进行输出。 |3.
那么,如何使用VBA代码来实现复制粘贴操作呢?本文将介绍常用的一些代码。...图1 使用Copy方法 也可以使用Copy方法,将单元格区域A1:B2中的值复制到以单元格D1开头的单元格区域中: Range("A1:B2").CopyRange("D1") ?...使用For循环 使用For循环,也可以实现上图3的结果。...使用自动筛选,不必使用很多次循环,也能实现上图3所示的结果。...在使用VBA代码进行复制操作时,我们不需要先选择想要复制的数据,也不需要选择或激活数据所在的工作表。 2. 在不同的工作表之间复制,或者在不同的工作簿之间复制时,在前面加上相应的工作表或工作簿名称。
序 本文主要研究下如何使用opennlp进行文档分类 DoccatModel 要对文档进行分类,需要一个最大熵模型(Maximum Entropy Model),在opennlp中对应DoccatModel...cat.size()); } 这里为了方便测试,先手工编写DocumentSample来做训练文本 categorize方法返回的是一个概率,getBestCategory可以根据概率来返回最为匹配的分类...本文仅仅是使用官方的测试源码来做介绍,读者可以下载个中文分类文本训练集来训练,然后对中文文本进行分类。 doc Document Categorizer API
作者 | Vivek Amilkanthawar 来源 | Towards Data Science 编辑 | 代码医生团队 对于给定的音频数据集,可以使用Spectrogram进行音频分类吗?...尝试使用Google AutoML Vision。把音频文件转换成各自的频谱图,并使用频谱图作为分类问题的图像。 这是频谱图的正式定义 频谱图是信号频率随时间变化的直观表示。...只需几个小时的工作,在AutoML Vision的帮助下,现在非常确定使用其频谱图对给定音频文件的分类可以使用机器学习视觉方法完成。...有了这个结论,可以使用CNN构建自己的视觉模型,并进行参数调整并产生更准确的结果。...如果不想构建自己的模型,请继续使用更多节点小时训练相同的模型,并使用PREDICT选项卡中的说明在生产中使用您的模型。
使用深度学习进行图像分类 解决任何真实问题的重要一步是获取数据。Kaggle提供了大量不同数据科学问题的竞赛。...我们将挑选一个2014年提出的问题,然后使用这个问题测试本章的深度学习算法,并在第5章中进行改进,我们将基于卷积神经网络(CNN)和一些可以使用的高级技术来改善图像识别模型的性能。...可以用下面的代码对索引进行无序排列: 在上面的代码中,我们使用无序排列后的索引随机抽出2000张不同的图片作为验证集。同样地,我们把训练数据用到的图片划分到train目录。...下面的代码演示了如何使用ImageFolder类进行变换和加载图片: train对象为数据集保留了所有的图片和相应的标签。...当pretrained为True时,算法的权重已为特定的ImageNet分类问题微调好。ImageNet预测的类别有1000种,包括汽车、船、鱼、猫和狗等。
Outlook不愧为Office家族中的一员,相比国内FoxMail来说功能要强大的多。若再配上Exchange,那确实十分无敌。
一般情况下k-Nearest Neighbor (KNN)都是用来解决分类的问题,其实KNN是一种可以应用于数据分类和预测的简单算法,本文中我们将它与简单的线性回归进行比较。...在本文中,我们将重点介绍二元分类,为了防止平局k通常设置为奇数。与分类任务不同,在回归任务中,特征向量与实值标量而不是标签相关联,KNN是通过对响应变量均值或加权均值来进行预测。...使用 KNN 进行分类 我们使用一个简单的问题作为,我们需要根据一个人的身高和体重来预测他或她的性别的情况。这里有两个标签可以分配给响应变量,这就是为什么这个问题被称为二元分类。...使用scikit-learn实现KNN分类器,代码如下: LabelBinarizer先将字符串转换为整数,fit方法创建了从标签字符串到整数的映射。输入标签使用transform方法进行转换。...所以我们使用训练集的对象进行fit。然后使用KNeighborsClassifier进行预测。 通过将我们的测试标签与分类器的预测进行比较,我们发现一个男性测试实例被错误地预测为女性。
nn_model.add(layers.Dense(10, activation='relu')) nn_model.add(layers.Dense(1, activation='sigmoid')) # 二分类...sigmoid, 多分类 softmax 参考文章: Embedding层详解 Keras: GlobalMaxPooling vs.
作者 | Aakash 来源 | Medium 编辑 | 代码医生团队 什么是分类问题? 对对象进行分类就是将其分配给特定的类别。...这本质上是一个分类问题是什么,即将输入数据从一组这样的类别,也称为类分配到预定义的类别。 机器学习中的分类问题示例包括:识别手写数字,区分垃圾邮件和非垃圾邮件或识别核中的不同蛋白质。...https://www.kaggle.com/c/jovian-pytorch-z2g 使用的数据集 为了演示分类问题的工作原理,将使用UrbanSound8K数据集。...专门使用它们来创建两个具有不同架构的模型。用来进行此项目的环境在anaconda云上可用。...或者可以使用Kaggle部署其ML模型。Kaggle提供了基于云的GPU,每周可使用30个小时。
标签:VBA 下面的VBA过程可以打开百度并搜索指定内容。...VBA代码如下: Sub OpenIEBrower() Dim strUserSearch As String Dim IE As Object Application.ScreenUpdating
添加我们自己的分类器层 现在要将下载的预训练模型用作我们自己的分类器,我们必须对其进行一些更改,因为我们要预测的类数可能与模型已训练的类数不同。...另一个原因是有可能(几乎在所有情况下)模型已经过训练以检测某些特定类型的事物,但我们想使用该模型检测不同的事物。 所以模型的一些变化是可以有我们自己的分类层,它会根据我们的要求进行分类。...我们可以看到这个预训练模型是为对1000个类进行分类而设计的,但是我们只需要 6 类分类,所以稍微改变一下这个模型。...提示:使用 pred_dl 作为数据加载器批量加载 pred 数据进行预测。练习它,并尝试使用集成预测的概念来获得更正确的预测数量。...未来工作 使用我们保存的模型集成两个模型的预测,进行最终预测并将此项目转换为flask/stream-lit网络应用程序。
9.添加自己的分类器层 现在,要使用下载的预训练模型作为您自己的分类器,必须对其进行一些更改,因为要预测的类别数量可能与训练模型所依据的类别数量不同。...另一个原因是(几乎在每种情况下)都有可能训练模型来检测某些特定类型的事物,但是希望使用该模型来检测不同的事物。 因此模型的一些变化是可以有您自己的分类层,该层将根据要求执行分类。...可以看到,该经过预训练的模型旨在用于对1000个班级进行分类。但是只需要6类分类,因此可以稍微更改此模型。...替换最后一层后的新模型: 已经用自己的分类器层替换了,因为可以看到有6个out_features表示6个输出,但是在预训练模型中还有另一个数字,因为模型经过训练可以对这些分类进行分类。...提示:使用pred_dl作为数据加载器可以批量加载pred数据以进行预测。进行练习,并尝试使用集合预测的概念来获得更多正确的预测数。
领取专属 10元无门槛券
手把手带您无忧上云