首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python入门教程(六):Numpy计算之布尔运算

    布尔掩码是基于规则来抽取,修改,计数或者对一个数组中的值进行其他操作,例如,统计数组中有多少大值于某一个值给定的值,或者删除某些超出门限的异常值。...如果我们使用Numpy的通用函数可以用来替代循环,以实现快速的数组的逐元素比较,同样地,我们也可以用掩码来解决这些问题。...bool(42), bool(0) # (True, False) bool(42 and 0) # False bool(42 or 0) # True 当你对整数使用&和|时,表达式操作的是元素的比特...Use a.any() or a.all() 同样,对于给定数组的进行逻辑运算时,我们也应该使用&或|,而不是or或and。...Use a.any() or a.all() 总结一下,and和or对整个对象执行单个布尔运算,而对&和|对一个对象的内容(单个比特或字节)执行多个布尔运算。

    4.3K20

    数据科学 IPython 笔记本 9.8 比较,掩码和布尔逻辑

    译者:飞龙 协议:CC BY-NC-SA 4.0 本节介绍如何使用布尔掩码,来检查和操作 NumPy 数组中的值。...我们在“NumPy 上的数组计算:通用函数”中看到,NumPy 的ufuncs可用于代替循环,对数组进行快速的逐元素算术运算;以同样的方式,我们可以使用其他ufunc对数组进行逐元素比较,然后我们可以操纵结果来回答我们的问题...and或or,将尝试求解整个数组对象的真实性或错误性,这不是一个明确定义的值: A or B ''' -------------------------------------------------...Use a.any() or a.all() ''' 类似地,当在给定数组上执行布尔表达式时,你应该使用|或&而不是or或and: x = np.arange(10) (x > 4) & (x a.any() or a.all() ''' 所以记住这一点:and和or对整个对象执行单个布尔求值,而&和|对对象的内容(单个位或字节)执行多次布尔求值。

    1K10

    NumPy学习笔记—(23)

    如果我们关心的问题是,是否有任何的元素值或全部的元素值为 True,我们可以使用np.any或np.all: # 有没有任何一个元素大于8?...区别在于:and和or用在将整个对象当成真值或假值进行运算的场合,而&和|会针对每个对象内的二进制位进行运算。 当你使用and或or的时候,相当于要求 Python 将对象当成是一个布尔值的整体。...or操作时,等同于要求 Python 把数组当成一个整体来求出最终的真值或假值,这样的值是不存在的,因此会导致一个错误: A or B --------------------------------...Use a.any() or a.all() 类似的,当对于给定的数组进行布尔表达式运算时,你应该使用|或&,而不是or或and: x = np.arange(10) (x > 4) & (x a.any() or a.all() 因此,你只需要记住:and和or对整个对象进行单个布尔操作,而&和|会对一个对象进行多个布尔操作(比如其中每个二进制位)。

    2.6K60

    Python数据处理入门教程!

    本节我们主要介绍以下几种常用的创建方式: 使用列表或元组 使用 arange 使用 linspace/logspace 使用 ones/zeros 使用 random 从文件读取 其中,最常用的一般是...我们偶尔会需要使用这种方式来构造 array,比如: 需要创建一个连续一维向量作为输入(比如编码位置时可以使用) 需要观察筛选、抽样的结果时,有序的 array 一般更加容易观察 ⚠️ 需要注意的是:在...reshape 时,目标的 shape 需要的元素数量一定要和原始的元素数量相等。...Use a.any() or a.all() # 即便你全是 True 它也不行 arr = np.array([1, 2, 3]) cond2 = arr > 0 cond2 array([ True...Use a.any() or a.all() # 咱们只能用 any 或 all,这个很容易犯错,请务必注意。

    70320

    Python数据处理入门教程(Numpy版)

    本节我们主要介绍以下几种常用的创建方式: 使用列表或元组 使用 arange 使用 linspace/logspace 使用 ones/zeros 使用 random 从文件读取 其中,最常用的一般是...我们偶尔会需要使用这种方式来构造 array,比如: 需要创建一个连续一维向量作为输入(比如编码位置时可以使用) 需要观察筛选、抽样的结果时,有序的 array 一般更加容易观察 ⚠️ 需要注意的是:在...reshape 时,目标的 shape 需要的元素数量一定要和原始的元素数量相等。...Use a.any() or a.all() # 即便你全是 True 它也不行 arr = np.array([1, 2, 3]) cond2 = arr > 0 cond2 array([ True...Use a.any() or a.all() # 咱们只能用 any 或 all,这个很容易犯错,请务必注意。

    64320

    Pandas 2.2 中文官方教程和指南(九·一)

    Use a.empty, a.bool(), a.item(), a.any() or a.all()....使用的适当方法取决于您的函数是希望在整个 `DataFrame` 或 `Series` 上操作,是按行还是按列,还是逐元素操作。 1. 表格函数应用: `pipe()` 1....DataFrame.sort_values()方法用于按其列或行值对DataFrame进行排序。可选的by参数可用于指定一个或多个列以确定排序顺序。...Head 和 tail 要查看 Series 或 DataFrame 对象的小样本,请使用head()和tail()方法。默认显示的元素数量为五个,但您可以传递自定义数量。...在过去,pandas 推荐使用Series.values或DataFrame.values来从 Series 或 DataFrame 中提取数据。您仍然会在旧代码库和在线上找到对这些的引用。

    19900

    剖析源码讲解Numpy模块中的tile函数

    其实如果可以使用Python广播机制的话是没有必要使用tile函数的。下面就来通过源码来简单分析tile函数的运作,以及如何简单的使用它。...像int,True这样的标量值,它们被转换成的元素是(value, )这种形式,所以获取长度肯定得到的是1; 剩下的一些序列化的参数,它们的len长度>=1,不确定,这就需要看这些参数中有多少个元素。...Use a.any() or a.all() ''' 然后我们来分析这个判断语句把那些情况筛选出去了: all(x == 1 for x in tup) and isinstance(A, _nx.ndarray...我们把shape属性和我们需要进行重复次数的tup中对应的元素相乘形成新的数组,这个结果作为我们最终的shape。 ?...这里的 c.reshape(-1,n)直接把c中的全部元素变成是一个一行n列的一个数组。

    1.4K10

    Eigen 高维矩阵运算

    Tensor 类 Matrix 和 Array 表示二维矩阵,对于任意维度的矩阵可以使用 Tensor 类(当前最高支持 250 维) 注意:这部分代码是用户提供的,没有获得 Eigen 官方支持,不在官方文档支持的代码包里...控制计算设备 张量库提供了诸如收缩和卷积等各种运算的几种实现。这些实现针对不同的环境进行了优化: CPU 上的单线程,CPU 上的多线程,或者使用 Cuda 的 GPU。...(bool 型 Tensor 对象) && a && b 逐元素或 (bool 型 Tensor 对象) ` 逐元素大于 > a > b 逐元素不小于 >= a >= b 逐元素小于 < a < b...= b 所有元素为 True all() a.all() 指定维度所有元素为 True all(const Dimensions& new_dims) a.all(Eigen::array({0, 1})) 存在元素为 True any() a.any() 指定维度存在元素为 True any(const Dimensions& new_dims) a.any(Eigen::array

    3.6K30
    领券