学习
实践
活动
专区
工具
TVP
写文章

数据挖掘】图数据挖掘

那么图数据挖掘是干什么的呢?难道是开着挖掘机来进行挖掘?还是扛着锄头?下面讲讲什么是图数据挖掘。 一、什么是图数据挖掘 这个话题感觉比较沉重,以至于我敲打每个字都要犹豫半天,这里我说说我对图数据挖掘的理解。数据是一个不可数名字,那么说明数据是一个没有边界的东西。 那么不难理解,数据挖掘就是挖掘数据里面的“宝贝”,图数据挖掘,就是以图的结构来存储、展示、思考数据,以达到挖掘出其中的“宝贝”。那这个“宝贝”是什么? 那么对这个图进行关系挖掘,那么会产生很多有用的数据,比如可以推荐你可能认识的人,那就是朋友的朋友,甚至更深,这就形成了某空间好友推荐的功能。比如某宝的你可能喜欢的宝贝,可以通过图数据挖掘来实现。 这就是我认为的图数据挖掘。 从学术上讲,图数据挖掘分为数据图,模式图两种。至于这两个类型的区别,由于很久没有关注这块,所以只能给出一个字面意义上的区别。

1.1K80

web安全常见漏洞_web漏洞挖掘

常见Web安全漏洞 1、越权漏洞 不同权限账户之间的存在越权访问 检测 抓去a用户功能链接,然后登录b用户对此链接进行访问 抓去a用户功能链接,修改id为b的id,查看是否能看b的相关数据 替换不同的 2、SQL注入 后台sql语句拼接了用户的输入,而且web应用程序对用户输入数据的合法性没有判断和过滤,前端传入后端的参数是攻击者可控的,攻击者通过构造不同的sql语句来实现对数据库的任意操作。 (3)使用正则表达式过滤,对用户输入的数据进行严格的检查,使用正则表达式对危险字符串进行过滤,这种方法是基于黑名单的过滤 (4)使用 Web 应用防火墙 报错注入–>传送门 宽字节注入–>传送门 3 3 web应用程序可以使用chroot环境包含被访问的web目录,或者使用绝对路径+参数来访问文件目录,使其即使越权也在访问目录之内。 6、关键会话重放攻击 不断恶意或欺诈性地重复一个有效的数据包,重放攻击者可以拦截并重复发该数据到服务端,服务器端未对用户提交的数据包重放进行有效限制。

16040
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据挖掘】大数据知识之数据挖掘

    从市场需求及应用的角度来看,通过对大数据的存储、挖掘和分析,大数据在管理、营销、数据标准化等领域大有可为,促使管理/服务水平提升、营销方式改进等。下面我们就来讲讲数据挖掘的那些事。 目前在数据挖掘中,最常使用的两种神经网络是BP网络和RBF网络 不过,由于人工神经网络还是一个新兴学科,一些重要的理论问题尚未解决。 5规则归纳 规则归纳相对来讲是数据挖掘特有的技术。 它指的是在大型数据库或数据仓库中搜索和挖掘以往不知道的规则和规律,这大致包括以下几种形式:IF … THEN … 6可视化技术 可视化技术是数据挖掘不可忽视的辅助技术。 数据挖掘通常会涉及较复杂的数学方法和信息技术,为了方便用户理解和使用这类技术,必须借助图形、图象、动画等手段形象地指导操作、引导挖掘和表达结果等,否则很难推广普及数据挖掘技术。 至于数据挖掘的未来,让我们拭目以待。

    47690

    数据挖掘数据挖掘#商业智能(BI)数据分析挖掘概念

    数据挖掘目前在各类企业和机构中蓬勃发展。因此我们制作了一份此领域常见术语总结,希望你喜欢。 大数据(Big Data): 大数据既是一个被滥用的流行语,也是一个当今社会的真实趋势。此术语指代总量与日俱增的数据,这些数据每天都在被捕获、处理、汇集、储存、分析。 机器学习(Machine Learning): 一个学科,研究从数据中自动学习,以便计算机能根据它们收到的反馈调整自身运行。与人工智能、数据挖掘、统计方法关系密切。 文本挖掘(Text Mining): 对包含自然语言的数据的分析。对源数据中词语和短语进行统计计算,以便用数学术语表达文本结构,之后用传统数据挖掘技术分析文本结构。 网络挖掘/网络数据挖掘Web Mining / Web Data Mining) : 使用数据挖掘技术从互联网站点、文档或服务中自动发现和提取信息。

    84490

    数据挖掘】常用的数据挖掘方法

    数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程 利用数据挖掘进行数据分析常用的方法主要有分类 、回归分析、聚类、关联规则、特征、变化和偏差分析、Web挖掘等, 它们分别从不同的角度对数据进行挖掘。 在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据 意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦ Web挖掘。 随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息

    1.8K60

    数据挖掘数据挖掘工作总结

    导读:很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。 数据挖掘在国外是一份很不错的工作。我喜欢数据挖掘,因为它很有趣。很高兴以后就从事这方面的工作啦。写论文之余,也考虑一下数据挖掘工程师的职业规划。 ? 以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想往这方面发展的朋友共享: 数据挖掘从业人员工作分析 1.数据挖掘从业人员的愿景: 数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色 从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等,当然也少不了你使用的工具的对应说明书了 ,如SPSS、SAS等厂商的《SAS数据挖掘与分析》、《数据挖掘Clementine应用实务》、《EXCEL 2007数据挖掘完全手册》等,如果多看一些如《数据挖掘原理》 等书籍那就更好了。

    78560

    数据挖掘】系统地学习数据挖掘

    ●什么是数据挖掘? ●怎么培养数据分析的能力? ●如何成为一名数据科学家? 磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: ●数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 ●数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 ●数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 ●经典图书推荐:《概率论与数理统计》、《统计学》推荐David Freedman版、《业务建模与数据挖掘》、《数据挖掘导论》、《SAS编程与数据挖掘商业案例》、《Clementine数据挖掘方法及应用 ●经典图书推荐:《数据挖掘:概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《 ●可以尝试改进一些主流算法使其更加快速高效,例如实现Hadoop平台下的SVM云算法调用平台--web 工程调用hadoop集群。 ●需要广而深的阅读世界著名会议论文跟踪热点技术。

    56050

    数据挖掘——关联规则挖掘

    数据挖掘》国防科技大学 《数据挖掘》青岛大学 数据挖掘之关联规则挖掘 关联规则挖掘(Association Rule Mining)最早是由Agrawal等人提出。 形式化描述 • 关联规则挖掘的交易数据集记为D • D ={T1,T2,…,Tk,…,Tn},Tk(k=1,2,…,n)称为交易,每个交易有唯一的标识,记作TID。 基本概念 挖掘关联规则 在给定一个交易数据集D上,挖掘关联规则问题就是产生支持度和置信度分别大于等于用户给定的最小支持度阈值和最小置信度阈值的关联规则。 FP树是一种输入数据的压缩表示,它通过逐个读入事务,并把每个事务映射到FP树中的一条路径来构造。 构造FP树: 扫描数据库,得到频繁1-项集,并把项按支持度递减排序 再一次扫描数据库,建立FP-tree(遍历每一个事务,构造成一条路径,并给项计数) 生成条件模式: 从FP-tree的头表开始

    15310

    数据挖掘

    ---- 概述 最近一直在学习数据挖掘和机器学习,无论是是服务端开发人员还是web开发人员,个人觉得最起码都要都一些最基本的数据挖掘和机器学习知识。废话少说,我们先来学习一下数据挖掘的是什么意思? 个人的理解是从业务数据挖掘出隐含的、未知的、对决策有潜在价值的关系、模式和趋势。也就是说我们从数据挖掘到符合我们所需的目标。 数据挖掘的分解 目标定义-》数据采样-》数据整理-》模型评价-》模型发布。 所谓目标定义即定义我们到底需要做什么,目标的定义往往来源于需求,这里不去具体的阐述。 数据的整理分为很多步骤,对于已经采样的数据来说要进一步的进行审核和加工处理。数据预处理完成之后,在进行数据挖掘建模。最终对模型进行评价和发布。 属性规约 属性规约是通过属性合并来创建新属性维数,或者直接删除不相关的属性来减少属性的维数,从而提高数据挖掘的效率和降低计算成本。

    57650

    数据挖掘

    数据挖掘——就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web挖掘等, 它们分别从不同的角度对数据进行挖掘。   ①分类。 在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据 意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。   ⑦Web挖掘。 随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息

    34920

    数据挖掘数据挖掘 特异群组挖掘的框架与应用

    特异群组挖掘与聚类、异常挖掘都属于根据数据对象的相似性来划分数据集的数据挖掘任务,但是,特异群组挖掘在问题定义、算法设计和应用效果方面不同于聚类和异常等挖掘任务。 1、引言 数据挖掘技术是数据开发技术的核心[1]。其中,挖掘高价值、低密度的数据对象是大数据的一项重要工作,甚至高价值、低密度常常被用于描述大数据的特征[2]。 特异群组挖掘、聚类和异常检测都是根据数据对象间的相似程度来划分数据对象的数据挖掘任务,但它们在问题定义、算法设计和应用效果上存在差异[5]。 目前集体异常挖掘主要处理序列数据、图数据和空间数据。 值得指出的是,聚类、特异群组挖掘、异常检测都是基于数据对象的相似性来挖掘数据对象的。

    706100

    数据挖掘】如何系统地学习数据挖掘

    ●什么是数据挖掘? ●怎么培养数据分析的能力? ●如何成为一名数据科学家? 磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: ●数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 ●数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 ●数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 ●经典图书推荐:《概率论与数理统计》、《统计学》推荐David Freedman版、《业务建模与数据挖掘》、《数据挖掘导论》、《SAS编程与数据挖掘商业案例》、《Clementine数据挖掘方法及应用 ●经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking ●可以尝试改进一些主流算法使其更加快速高效,例如实现Hadoop平台下的SVM云算法调用平台--web 工程调用hadoop集群。 ●需要广而深的阅读世界著名会议论文跟踪热点技术。

    70680

    数据挖掘数据挖掘的九条定律

    20世纪90年代晚期发展的跨行业数据挖掘标准流程,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者成功运用和遵循。 虽然‘跨行业数据挖掘标准流程’能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什么适合这样做。在本文中将阐述提出数据挖掘的九种准则或“定律”以及另外其它一些熟知的解释。 开始从理论上来解释数据挖掘过程。 第一,目标律:业务目标是所有数据解决方案的源头。 定义了数据挖掘的主题:数据挖掘关注解决业务业问题和实现业务目标。 数据预处理的目的是把数据挖掘问题转化为格式化的数据,使得分析技术(如数据挖掘算法)更容易利用它。 有五种因素说明试验对于寻找数据挖掘解决方案是必要的: 数据挖掘项目的业务目标定义了兴趣范围(定义域),数据挖掘目标反映了这一点; 与业务目标相关的数据及其相应的数据挖掘目标是在这个定义域上的数据挖掘过程产生的

    49250

    数据挖掘】如何系统地学习数据挖掘

    在学习数据挖掘之前应该明白几点: 数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效) 数据挖掘适用于传统的BI(报表、OLAP等)无法支持的领域。 经 典图书推荐:《概率论与数理统计》、《统计学》推荐David Freedman版、《业务建模与数据挖掘》、《数据挖掘导论》、《SAS编程与数据挖掘商业案例》、《Clementine数据挖掘方法及应用 经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking 可以尝试改进一些主流算法使其更加快速高效,例如实现Hadoop平台下的SVM云算法调用平台–web 工程调用hadoop集群。 需 要广而深的阅读世界著名会议论文跟踪热点技术。

    45460

    数据挖掘数据挖掘与预测分析术语

    数据(Big Data): 大数据既是一个被滥用的流行语,也是一个当今社会的真实趋势。此术语指代总量与日俱增的数据,这些数据每天都在被捕获、处理、汇集、储存、分析。 维基百科是这样描述“大数据”的:“数据集的总和如此庞大复杂,以至于现有的数据库管理工具难以处理(…)”。 机器学习(Machine Learning): 一个学科,研究从数据中自动学习,以便计算机能根据它们收到的反馈调整自身运行。与人工智能、数据挖掘、统计方法关系密切。 文本挖掘(Text Mining): 对包含自然语言的数据的分析。对源数据中词语和短语进行统计计算,以便用数学术语表达文本结构,之后用传统数据挖掘技术分析文本结构。 网络挖掘/网络数据挖掘Web Mining / Web Data Mining) : 使用数据挖掘技术从互联网站点、文档或服务中自动发现和提取信息。

    48690

    数据挖掘算法汇总_python数据挖掘算法

    今天说一说数据挖掘算法汇总_python数据挖掘算法,希望能够帮助大家进步!!! 前言:   找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位 朴素贝叶斯的优点:   对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点:   对输入数据的表达形式很敏感。 接下来的工作就是在FP-Tree上进行挖掘。    依次从m,b,a,c,f的条件模式基上挖掘频繁项集,有些项需要递归的去挖掘,比较麻烦,比如m节点,具体的过程可以参考博客:Frequent Pattern 挖掘之二(FP Growth算法),里面讲得很详细

    12010

    数据挖掘】金融行业的数据挖掘之道

    工商银行文本挖掘技术应用探索分享 工商银行在大家传统的印象当中是一个体形非常庞大但是稳步前行的形象,但是近些年来在大数据的挑战下工商银行积极应对外界变化,做一些转型。 其中一个举措就是通过数据应用驱动业务变革。今天我所分享的主题就是和银行的客户服务相关的,如何应用文本挖掘技术洞察客户的心声。 以上这些信息都是以文本方式存在的,我们可以通过文本挖掘的方法了解用户在说什么,挖掘出对我们有价值的信息,这对工商银行客户服务的提升会有很大的帮助。 结合文本挖掘的客户服务分析流程 在结合了文本挖掘技术之后有了一些流程变化,不仅对结构化数据做分析,同时也能够从客户反馈的文本当中提取出客户的热点意见,再把热点去和结构化数据做关联分析,就能得到更加丰富的分析场景 从刚才服务流程的演变可以看到有了一些挖掘的功能,首先从技术来说丰富了分析的手段,原来只能对结构化进行分析,现在能够对文本数据客户所说的内容进行分析,然后扩大了分析的范围,原来只能关注到工商银行官方服务渠道所记录下来的信息

    47150

    数据挖掘】基于数据挖掘技术的CRM应用

    二、数据挖掘(DM)   数据挖掘(Data Mining,简称DM),简单的讲就是从大量数据挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。 三、客户关系管理应用数据挖掘的步骤   (一)需求分析   只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。 应对现有资源如已有的历史数据进行评估,确定是否能够通过数据挖掘技术来解决用户的需求,然后将进一步确定数据挖掘的目标和制定数据挖掘的计划。    (三)选择合适的数据挖掘工具   如果从上一步的分析中发现,所要解决的问题能用数据挖掘比较好地完成,那么需要做的第三步就是选择合适的数据挖掘技术与方法。将所要解决的问题转化成一系列数据挖掘的任务。 数据挖掘主要有五种任务:分类,估值预测,关联规则,聚集,描述。前三种属于直接的数据挖掘。在直接数据挖掘中,目标是应用可得到的数据建立模型,用其它可得到的数据来描述感兴趣的变量。后两种属于间接数据挖掘

    71480

    数据挖掘】rattle:数据挖掘的界面化操作

    这里的统计计算可以是数据分析、建模或是数据挖掘等,通过无数大牛提供的软件包,可以帮我们轻松实现算法的实施。 上 图红色区域就是数据分析与挖掘的流程,包括:数据源(Data)-->数据探索与检验(Explore、Test)-->数据变换 (Transform)-->数据挖掘(Cluster、Associate、 其次,我们来介绍一下rattle数据挖掘操作界面都有哪些东西: 1)数据源(Data) ? 当数据清洗干净或对数据有了基本了解后,就要进入数据挖掘过程,rattle工具提供了常用的数据挖掘算法,如:K-means聚类、层次聚类、关联规则、决策树、随机森林、支持向量机、线性回归、Logistic 欢迎各位交流与探讨有关数据分析的问题。 刘顺祥,数据分析师,热爱数据分析与挖掘工作,擅长使用R语言,目前自学Python语言。

    1.1K61

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 对话机器人

      对话机器人

      云小微对话机器人基于完全自研的AI全链路能力,对用户输入的文本或语音识别的文本做语义理解、识别用户真实意图,记忆上下文和联想分析,面向用户提供快速、精准的信息问询体验。同时还为客户提供运营工具,通过对线上用户日志的挖掘,以及腾讯海量线上数据挖掘,提炼出各种问法,最终提高用户服务体验的满意度,减轻人工服务压力。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券