首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Fortran如何实现矩阵与向量的乘法运算

矩阵是二维数组,而向量是一维数组,内置函数matmul不能实现矩阵与向量的乘法运算。在这一点Fortran不如matlab灵活。 Fortran如何实现矩阵与向量的乘法运算,现有以下三种方法供参考。...数组c的第一列就是需要的计算结果。 spread(B,2,2)就是按列扩展,成为二维数组 ? 三)利用dot_product函数。...dot_product函数是向量点积运算函数,可将二维数组的每一行抽取出来,和一维数组作dot_product运算。 ? 程序员为什么会重复造轮子?...现在的软件发展趋势,越来越多的基础服务能够“开箱即用”、“拿来用就好”,越来越多的新软件可以通过组合已有类库、服务以搭积木的方式完成。...对程序员来讲,在一开始的学习成长阶段,造轮子则具有特殊的学习意义,学习别人怎么造,了解内部机理,自己造造看,这是非常好的锻炼。每次学习新技术都可以用这种方式来练习。

9.9K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    详解Python中的算术乘法、数组乘法与矩阵乘法

    (1)算术乘法,整数、实数、复数、高精度实数之间的乘法。 ? (2)列表、元组、字符串这几种类型的对象与整数之间的乘法,表示对列表、元组或字符串进行重复,返回新列表、元组、字符串。 ?...、要么其中一个为1、要么其中一个对应位置上没有数字(没有对应的维度),结果数组中该维度的大小与二者之中最大的一个相等。...数组与标量相乘,等价于乘法运算符或numpy.multiply()函数: ? 如果两个数组是长度相同的一维数组,计算结果为两个向量的内积: ?...如果两个数组是形状分别为(m,k)和(k,n)的二维数组,表示两个矩阵相乘,结果为(m,n)的二维数组,此时一般使用等价的矩阵乘法运算符@或者numpy的函数matmul(): ?...在这种情况下,第一个数组的最后一个维度和第二个数组的倒数第二个维度将会消失,如下图所示,划红线的维度消失: ? 6)numpy矩阵与矩阵相乘时,运算符*和@功能相同,都表示线性代数里的矩阵乘法。

    9.4K30

    吴恩达机器学习笔记15-矩阵与向量的乘法

    而结果列向量的维数就是矩阵的行数,等式左边的矩阵和向量的形状也比较有意思,矩阵的列数必须等于向量的维数,只有这样才能进行矩阵和向量的乘法。...上图中,如果把左边四套房的面积代入右边的式子中,就可以得分别得到四套房的售价。如果我们用刚刚讲到的矩阵和向量的乘法表示上面这个事,写出来的式子会非常漂亮。如下图: ?...我们把模型中的两个参数揪出来组成一个列向量。然后呢,因为-40参数对应的是1,而0.25对应的是x,所以得到一个4×2的一个矩阵,而矩阵的第1列都是1....就会得到上面图中下半部分的这样的一个矩阵与向量乘法的式子,再利用前面讲的矩阵与向量乘法的运算规则,可以用一个式子就表示出4套房子的售价的运算,厉害吧? 有些同学可能觉得这种写法多此一举,更加麻烦。...如果没有这样的规定,我们可能需要for循环在代码中实现这个事情,这就有点麻烦了。 下一讲将介绍更一般的矩阵和矩阵的乘法。

    2.3K11

    机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法

    在机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念。...今天我们就讨论下其中的标量对向量求导,标量对矩阵求导, 以及向量对向量求导这三种场景的基本求解思路。     对于本文中的标量对向量或矩阵求导这两种情况,如前文所说,以分母布局为默认布局。...向量对向量求导,以分子布局为默认布局。如遇到其他文章中的求导结果和本文不同,请先确认使用的求导布局是否一样。另外,由于机器学习中向量或矩阵对标量求导的场景很少见,本系列不会单独讨论这两种求导过程。...,则不能这么使用乘法法则。     ...定义法矩阵向量求导的局限     使用定义法虽然已经求出一些简单的向量矩阵求导的结果,但是对于复杂的求导式子,则中间运算会很复杂,同时求导出的结果排列也是很头痛的。

    1K20

    机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法

    在机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导的方法,但是这个方法对于比较复杂的求导式子,中间运算会很复杂,同时排列求导出的结果也很麻烦。...因此我们需要其他的一些求导方法。本文我们讨论使用微分法来求解标量对向量的求导,以及标量对矩阵的求导。     本文的标量对向量的求导,以及标量对矩阵的求导使用分母布局。...矩阵微分的性质     我们在讨论如何使用矩阵微分来求导前,先看看矩阵微分的性质:     1)微分加减法:$d(X+Y) =dX+dY, d(X-Y) =dX-dY$     2)  微分乘法:$d(...比起定义法,我们现在不需要去对矩阵中的单个标量进行求导了。     ...微分法求导小结     使用矩阵微分,可以在不对向量或矩阵中的某一元素单独求导再拼接,因此会比较方便,当然熟练使用的前提是对上面矩阵微分的性质,以及迹函数的性质熟练运用。

    1.7K20

    机器学习中的矩阵向量求导(五) 矩阵对矩阵的求导

    在矩阵向量求导前4篇文章中,我们主要讨论了标量对向量矩阵的求导,以及向量对向量的求导。...这两种定义虽然没有什么问题,但是很难用于实际的求导,比如类似我们在机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法中很方便使用的微分法求导。     ...矩阵向量化的主要运算法则有:     1) 线性性质:$vec(A+B) =vec(A) +vec(B)$     2) 矩阵乘法:$vec(AXB)= (B^T \bigotimes A)vec(X)...4) 逐元素乘法:$vec(A \odot X) = diag(A)vec(X)$, 其中$diag(A)$是$mn \times mn$的对角矩阵,对角线上的元素是矩阵$A$按列向量化后排列出来的。...如果遇到矩阵对矩阵的求导不好绕过,一般可以使用机器学习中的矩阵向量求导(四) 矩阵向量求导链式法则中第三节最后的几个链式法则公式来避免。

    3.1K30

    深度学习中的矩阵乘法与光学实现

    上篇笔记里(基于硅光芯片的深度学习)提到:深度学习中涉及到大量的矩阵乘法。今天主要对此展开介绍。 我们先看一下简单的神经元模型,如下图所示, ?...可以看出函数f的变量可以写成矩阵乘法W*X的形式。对于含有多个隐藏层的人工神经网络,每个节点都会涉及矩阵乘法,因此深度学习中会涉及到大量的矩阵乘法。 接下来我们来看一看矩阵乘法如何在光芯片上实现。...线性代数中,可以通过奇异值分解(singular value decomposition),将一个复杂的矩阵化简成对角矩阵与幺正矩阵相乘。具体来说,m*n阶矩阵M可以写成下式, ?...通过多个MZ干涉器级联的方法,可以实现矩阵M,矩阵元对应深度学习中的连接权与阈值。...3) 光芯片可以实现深度学习,但是光芯片的优势是什么?功耗低? 公众号中编写公式不太方便,目前都是通过截图的方法实现,不太美观,大家见谅。

    2.5K20

    机器之心最干的文章:机器学习中的矩阵、向量求导

    的 ? 元等于矩阵 ? 的 i 行 和 矩阵 ? 的第 j 列的内积,这正是矩阵乘法的定义。 注:将两项乘积的和转化成向量内积或矩阵相乘来处理,是很常用的技巧。...其二是把最后一项分母中的 W 理解成矩阵 W 中的任一个元素 w_ij,从而上述表达式中的四项分别是向量(此处看作行向量)、矩阵、矩阵、向量(列向量),从而该表达式可以顺利计算。...常见技巧及注意事项 实数在与一堆矩阵、向量作数乘时可以随意移动位置。且实数乘行向量时,向量数乘与矩阵乘法(1x1 矩阵和 1xm 矩阵相乘)的规则是一致的。...遇到相同下标求和就联想到矩阵乘法的定义,即 ? 。特别地,一维下标求和联想到向量内积 ? ,二维下标求和联想到迹 ? (A,B 应为同型矩阵)。...需要用到向量(或矩阵)对矩阵求导的情形,要么把矩阵按列拆开转化成向量对向量求导(最终很有可能通过分块矩阵乘法再合并起来。

    3.4K120

    【干货】​深度学习中的线性代数

    向量(Vector) 向量是一个有序的数字数组,可以在一行或一列中。 向量只有一个索引,可以指向矢量中的特定值。 例如,V2代表向量中的第二个值,在上面的黄色图片中为“-8”。 ?...为了得到结果向量的第一个值(16),我们将我们想要与矩阵(1和5)相乘的向量的数字乘以矩阵的第一行的数字(1和3))。...4.矩阵 - 矩阵乘法(Matrix-Matrix Multiplication) 如果你知道如何将一个矩阵乘以一个向量,那么将两个矩阵相乘并不困难。...它的计算方法如下: 将第二个矩阵拆分为列向量,然后将第一个矩阵分别与这些向量中的每一个相乘。 然后你把结果放在一个新的矩阵中。 下面的图片逐步解释了这一点: ? 下图进行总结: ?...我们之前讨论过矩阵乘法不是可交换的,但是有一个例外,即如果我们将矩阵乘以单位矩阵。

    2.3K100

    这是一份文科生都能看懂的线性代数简介

    在线性代数中,我们使用线性方程来表示数据,并把它们写成矩阵或向量的形式。因此,基本上你都是在与矩阵和向量打交道,而不是标量(我们会在文章的稍后部分介绍这些概念)。...矩阵和向量的运算 对一个矩阵乘以一个向量,可以理解为对矩阵的每一行乘以向量的每一列,运算结果会是一个向量,它的行数和矩阵的行数一样。下图展示了这是如何计算的。...为了得到结果向量中的第一个元素 16,选择拿来和矩阵相乘的向量中的元素 1 和 5,把它们与矩阵第一行中的元素 1 和 3 相乘,像这样:1*1 + 3*5 = 16。...你只需要将第一个矩阵中的每一个元素和第二个矩阵中对应位置的元素相加或者相减就可以了。如下图所示: 矩阵间的乘法 如果你知道如何计算矩阵和向量间的乘法,矩阵间的乘法就也简单了。...同样的,我们首先在实数上讨论这些性质,然后再使用在矩阵中。 1.逆运算 首先,什么是逆(倒数)? 一个数乘以它的逆(倒数)等于 1。注意,任何非零的数都有倒数。

    1.4K100

    入门 | 这是一份文科生都能看懂的线性代数简介

    在线性代数中,我们使用线性方程来表示数据,并把它们写成矩阵或向量的形式。因此,基本上你都是在与矩阵和向量打交道,而不是标量(我们会在文章的稍后部分介绍这些概念)。...对一个矩阵乘以一个向量,可以理解为对矩阵的每一行乘以向量的每一列,运算结果会是一个向量,它的行数和矩阵的行数一样。下图展示了这是如何计算的。...为了得到结果向量中的第一个元素 16,选择拿来和矩阵相乘的向量中的元素 1 和 5,把它们与矩阵第一行中的元素 1 和 3 相乘,像这样:1*1 + 3*5 = 16。...矩阵间的乘法 如果你知道如何计算矩阵和向量间的乘法,矩阵间的乘法就也简单了。注意,只有当第一个矩阵的列数和第二个矩阵的行数相等时,才能把它们两个乘起来。...同样的,我们首先在实数上讨论这些性质,然后再使用在矩阵中。 1.逆运算 首先,什么是逆(倒数)? 一个数乘以它的逆(倒数)等于 1。注意,任何非零的数都有倒数。

    1.4K90

    线性代数--MIT18.06(三)

    矩阵乘法和求解逆矩阵 3.1 课程内容:理解矩阵乘法和求解逆矩阵 3.1.1 矩阵乘法的四种方式 首先我们定义矩阵乘法 ? 基本方法(行乘以列) 我们知道,矩阵 ? 的 ?...的各个行向量 列的角度 正如第一讲所说,从列的角度来看,即 ? 的各列为 ? 的各列的线性组合构成, ? 的各列的线性组合的系数为 ? 的列的各个分量,即 ? 其中, ? 是 ?...的各个列向量 列乘以行的角度 由于列向量乘以行向量得到的是一个矩阵,因此从列乘以行的角度来看,矩阵 ? 乘以 ? 得到的是 ? 个矩阵之和,其中第 ? 个矩阵由 ?...的第 ? 列乘以 ? 的第 ? 行得到。 ? 块乘 矩阵乘法同样可以分块来乘,只要分块的大小能够使乘法有意义即可(相乘的分块的大小要相互匹配--可乘) ?...为任意矩阵,则矩阵运算的基本法则(rules of operations)如下 运算表示 备注说明 加法交换律 加法结合律 乘法结合律 乘法结合律 乘法结合律 转置 转置 转置 转置

    63640

    3吴恩达Meachine-Learing之线性代数回顾-(Linear-Algebra-Review)

    本文主要讨论神魔是矩阵和向量,谈谈如何加减乘矩阵及向量,讨论逆矩阵和转置矩阵的概念!!如果十分熟悉这些概念,可以很快的浏览一遍,如果对这些概念有些许的不确定,可以细看一下,慢慢咀嚼!...3.3 矩阵向量乘法 矩阵和向量的乘法如图:m×n 的矩阵乘以 n×1 的向量,得到的是 m×1 的向量 算法 举例: 3.4 矩阵乘法 矩阵乘法: m×n 矩阵乘以 n×o 矩阵,变成 m×o 矩阵...3.5 矩阵乘法的性质 矩阵乘法的性质: 矩阵的乘法不满足交换律:A×B≠B×A 矩阵的乘法满足结合律。...即:A×(B×C)=(A×B)×C 单位矩阵:在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的 1,我们称 这种矩阵为单位矩阵.它是个方阵,一般用 I 或者 E 表示,本讲义都用 I 代表单位矩阵...矩阵的转置基本性质: matlab 中矩阵转置: 直接打一撇,x=y’。

    1.2K40

    机器学习中的矩阵向量求导(一) 求导定义与求导布局

    在之前写的上百篇机器学习博客中,不时会使用矩阵向量求导的方法来简化公式推演,但是并没有系统性的进行过讲解,因此让很多朋友迷惑矩阵向量求导的具体过程为什么会是这样的。...这里准备用三篇来讨论下机器学习中的矩阵向量求导,今天是第一篇。     本系列主要参考文献为维基百科的Matrix Caculas和张贤达的《矩阵分析与应用》。 1. ...类似的结论也存在于标量对向量的求导,向量对向量的求导,向量对矩阵的求导,矩阵对向量的求导,以及矩阵对矩阵的求导等。     ...毕竟我们求导的本质只是把标量求导的结果排列起来,至于是按行排列还是按列排列都是可以的。但是这样也有问题,在我们机器学习算法法优化过程中,如果行向量或者列向量随便写,那么结果就不唯一,乱套了。     ...矩阵向量求导基础总结     有了矩阵向量求导的定义和默认布局,我们后续就可以对上表中的5种矩阵向量求导过程进行一些常见的求导推导总结求导方法,并讨论向量求导的链式法则。 (欢迎转载,转载请注明出处。

    1.2K20

    彻底理解矩阵乘法

    别怕,我将会在这篇文章中为你带来矩阵乘法的全新体验,就算你大学时代学的高数全忘了也能看懂这篇文章。 先来回顾一下矩阵加法,还蛮简单的,就是相同位置的数字加一下。...矩阵乘以一个常数,就是所有位置都乘以这个数。 但是,等到矩阵乘以矩阵的时候,一切就不一样了。 这个结果是怎么计算出来的呢?大多数人知道的计算方法应该是教科书上给出的,我们就先来看这种方法。...通过前面的一般性法则我们知道大小为 m x n 的矩阵乘以大小为 n x p 的矩阵得到的矩阵大小为 m x p。 我们来耍一些小聪明,让矩阵 以列向量 作为其元素,而矩阵 以 作为其元素。...同样,如果把矩阵 的每一行看成一个向量,那么 其中, 更一般性地,我们可以推出: 又得到了一个结论: 矩阵 中的每一行都是矩阵 中所有行的线性组合。...下面省略一万字的证明,直接给出公式: 结论: 矩阵 等于矩阵 中各列与矩阵 中各行乘积之和。 举个例子,设矩阵 ,矩阵 ,那么: 你有没有发现,你每切换一次视角,你就会对矩阵乘法理解的更深刻。

    1.8K11

    线性代数--MIT18.06(三)

    矩阵乘法和求解逆矩阵 3.1 课程内容:理解矩阵乘法和求解逆矩阵 3.1.1 矩阵乘法的四种方式 首先我们定义矩阵乘法 AB = C 基本方法(行乘以列) 我们知道,矩阵 C 的 ( i, j )...列乘以行的角度 由于列向量乘以行向量得到的是一个矩阵,因此从列乘以行的角度来看,矩阵 A 乘以 B 得到的是 n 个矩阵之和,其中第 i 个矩阵由 A 的第 i 列乘以 B 的第 i 行得到。...块乘 矩阵乘法同样可以分块来乘,只要分块的大小能够使乘法有意义即可(相乘的分块的大小要相互匹配--可乘) ?...的形式,只不过 x 为 A 的逆矩阵 ? ,我们依然可以使用矩阵消元的形式来求解,只不过要比我们之前提到的矩阵消元多做一些消元而已,这就是Gauss-Jordan法。 以矩阵 A 为例 ?...3.1.3 AB的逆,A的转置的逆 ? 3.2 矩阵乘法习题课 2011年练习题 问:当 a,b 满足什么条件下矩阵 A 存在逆矩阵,并求解该逆矩阵。 ? ? ?

    44840
    领券