王新民 编译整理 量子位 出品 | 公众号 QbitAI 正在研究机器学习的全栈码农Dendrick Tan在博客上发布了一份教程+代码:用PyTorch实现将色块拼凑成的图片,转换为一幅Bob Ro
2021年9月17日,中科院上海药物所的蒋华良和郑明月以及华为健康智能实验室的乔楠等人在Journal of Medicinal Chemistry杂志发表文章,对用于从头药物设计的多个生成模型进行了总结和分析。
选自Paperspace Blog 作者:Felipe 机器之心编译 参与:Jane W、黄小天 「大多数人类和动物学习是无监督学习。如果智能是一块蛋糕,无监督学习是蛋糕的坯子,有监督学习是蛋糕上的糖衣,而强化学习则是蛋糕上的樱桃。我们知道如何做糖衣和樱桃,但我们不知道如何做蛋糕。」 Facebook 人工智能研究部门负责人 Yann LeCun 教授在讲话中多次提及这一类比。对于无监督学习,他引用了「机器对环境进行建模、预测可能的未来、并通过观察和行动来了解世界如何运作的能力」。 深度生成模型(deep
选自StatsBot 作者:Anton Karazeev 机器之心编译 参与:乾树、黄小天 生成对抗网络(GAN)是一类在无监督学习中使用的神经网络,其有助于解决按文本生成图像、提高图片分辨率、药物匹
编译|AI科技大本营(rgznai100) 参与 | 尚岩奇、周翔 生成式对抗网络(GANs)是一类用于解决无监督学习问题的神经网络,它们可以完成各种任务,例如通过描述生成图像,利用低分辨率图像还原出
如果你觉得好的话,不妨分享到朋友圈。 摘要:生成对抗网络(GAN)是一类在无监督学习中使用的神经网络,其有助于解决按文本生成图像、提高图片分辨率、药物匹配、检索特定模式的图片等任务。Statsbot
即使是非计算机行业, 大家也知道很多有名的神经网络结构, 比如CNN在处理图像上非常厉害, RNN能够建模序列数据. 然而CNN, RNN之类的神经网络结构本身, 并不能用于执行比如图像的内容和风格分
自编码AutoEncoder是一种无监督学习的算法,他利用反向传播算法,让目标值等于输入值。什么意思呢,下面举个例子
生成对抗网络及其变体的实现分为基于 Keras 和基于 PyTorch 两个版本。它们都是按照原论文实现的,但模型架构并不一定完全和原论文相同,作者关注于实现这些论文最核心的思想,而并不确定所有层级的配置都和原论文完全一致。本文首先将介绍各种 GAN 的论文摘要,然后提供详细论文和实现的地址。
选自GitHub 作者:eriklindernoren 机器之心编译 参与:刘晓坤、思源、李泽南 生成对抗网络一直是非常美妙且高效的方法,自 14 年 Ian Goodfellow 等人提出第一个生成对抗网络以来,各种变体和修正版如雨后春笋般出现,它们都有各自的特性和对应的优势。本文介绍了主流的生成对抗网络及其对应的 PyTorch 和 Keras 实现代码,希望对各位读者在 GAN 上的理解与实现有所帮助。 PyTorch 实现地址:https://github.com/eriklindernoren/
选自Medium 作者:Zhiting Hu 机器之心编译 参与:刘晓坤、路、邹俏也 Petuum 和 CMU 合作的论文《On Unifying Deep Generative Models》提出深度生成模型的统一框架。该框架在理论上揭示了近来流行的 GAN、VAE(及大量变体),与经典的贝叶斯变分推断算法、wake-sleep 算法之间的内在联系;为广阔的深度生成模型领域提供了一个统一的视角。7 月份在 ICML 2018 的名为「深度生成模型理论基础和应用」的研讨会将更进一步探讨深度生成模型的研究。
导读:生成对抗网络(GAN)是一类在无监督学习中使用的神经网络,其有助于解决按文本生成图像、提高图片分辨率、药物匹配、检索特定模式的图片等任务。Statsbot 小组邀请数据科学家 Anton Kar
论文:Advances and challenges in deep generative models for de novo molecule generation
知乎上有很多关于「如何判断女朋友是否生气」之类的问题,有人回答:字越少,事越大;还有人说:真生气,一个月不联系;假生气,会撒娇说「我生气了」。
安妮 整理自 GitHub 作者:Pawel.io 量子位 出品 | 公众号 QbitAI 近日,英国小哥Pawel.io在GitHub上图解了一系列生成式对抗网(GAN)和变分自编码器(VAE)的T
无监督学习的目标之一是不依靠显式的标注得到数据集的内在结构。自编码器是一种用于达成该目标的常见结构,它学习如何将数据点映射到隐编码中——利用它以最小的信息损失来恢复数据。通常情况下,隐编码的维度小于数据的维度,这表明自编码器可以实施某种降维。对于某些特定的结构,隐编码可以揭示数据集产生差异的关键因素,这使得这些模型能够用于表征学习 [7,15]。过去,它们还被用于预训练其它网络:先在无标注的数据上训练它们,之后将它们叠加起来初始化深层网络 [1,41]。最近的研究表明,通过对隐藏空间施加先验能使自编码器用于概率建模或生成模型建模 [18,25,31]。
场景描述:利用 AI 技术判断一个人的情绪通常有两种途径,一种是通过面部表情,另一种是通过语音。前者已经比较成熟,而语音识别情感方面的研究,正在快速发展。近期,一些科研团队提出了新的方法,来更准确地识别用户声音中的情绪。
△ 来源:Kaggle blog 从2014年诞生至今,生成对抗网络(GAN)始终广受关注,已经出现了200多种有名有姓的变体。 这项“造假神技”的创作范围,已经从最初的手写数字和几百像素小渣图,拓展
论点挖掘(Argument Mining)是一项从文本中提取论点成分的任务,通常作为自动写作评估系统的一部分。这是自然语言处理中一个非常热门的领域。一个好的 AM 模型可以将一段原始将一段原始文本的序列标记为它们所属的论点内容。虽然历史上这一问题被视为一个语义分割问题,最先进的(SOTA) AM技术把它作为一个命名实体识别(NER)问题的长序列的文本。
【导读】专知内容组整理了最近六篇对抗自编码器(Adversarial Autoencoder)相关文章,为大家进行介绍,欢迎查看! 1. AAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding(AAANE: 基于注意力机制对抗自编码器的多尺度网络节点表示) ---- ---- 作者:Lei Sang,Min Xu,Shengsheng Qian,Xindong Wu 摘要:Network embeddi
生成模型是机器学习中一个有趣的领域,在这个领域中,网络学习数据分布,然后生成新的内容,而不是对数据进行分类。生成建模最常用的两种方法是生成对抗网络(GAN)和可变自编码器(VAE)。在这篇文章中,我将尝试解释可变自动编码器(VAE)背后的原理,以及它是如何生成上述面的数据的。
有GitHub小伙伴提供了前人的肩膀供你站上去。TA汇总了18种热门GAN的PyTorch实现,还列出了每一种GAN的论文地址,可谓良心资源。
今天为大家介绍的是来自Liwei Liu,Tingjun Hou和Yu Kang团队的一篇论文。基于深度学习的分子生成模型因其生成具有新颖结构和理想理化属性的分子的能力而受到越来越多的关注。然而,这些模型的评估,特别是在生物学背景下的评估,仍然不足。为了解决现有度量标准的局限性并模拟实际应用场景,作者构建了RediscMol基准测试,它包括从5个激酶和3个GPCR数据集中提取的活性分子。作者引入了一组重新发现和相似性相关的度量标准,以评估8个代表性的生成模型的性能。基于RediscMol基准测试的发现与之前的评估结果不同。CharRNN、VAE和Reinvent在重现已知活性分子方面表现出更强的能力,而RNNAttn、TransVAE和GraphAF尽管在常用的分布学习度量标准上表现突出,但在这方面存在困难。作者的评估框架可能为在现实世界药物设计场景中推进生成模型提供宝贵的指导。
安妮 李林 编译自 Medium 量子位 出品 | 公众号 QbitAI 近年来,向往着用AI研发新药的美好愿景,巨头纷纷投下了重注。 制药巨头赛诺菲和AI药物发现平台Exscientia签下3亿美元
2022年6月7日,07:00 PDT(14:00 UTC)前夕从中东和亚洲地区开始出现的网络电缆断裂导致了网络问题。 亚非欧1号(AAE-1) 亚非欧1号(AAE-1)电缆是由一个电信财团运营的25000公里长的海底电缆,它经由埃及将东南亚与欧洲连接起来。 据网络监控公司Kentik的互联网分析主管Doug Madory表示,AAE-1出现的问题影响了东非、中东和南亚多个国家的互联网连接,其中包括巴基斯坦、索马里、吉布提和沙特阿拉伯。 Madory称:“此事件产生了广泛的影响,但似乎正在恢复中。除了只
2017年7月19号发生的 Parity 多重签名合约delegatecall漏洞(Parity Multisig Wallet delegatecall)事件之后,2017年11月6号再次发生了 Parity 多重签名函数库自杀漏洞事件(Parity Multi-Sig Library Self-Destruct)事件。此次漏洞影响587个钱包,包含了 513,774.16 Ether($152 million)。
PRODAT(Product data message),通常是一套很少改变的产品数据,可以包含技术和功能的产品描述,但不包含商业条款与条件。PRODAT通常会包括产品特性、技术数据、使用说明、使用要求和处理信息等。
选自openreview 机器之心编译 参与:蒋思源 ICLR 作为深度学习顶级会议,今年共接收到了 981 篇有效论文。去年 11 月,ICLR 2018 论文评审结果出炉,今天主办方正式放出接收论文结果:2.3% 的 oral 论文、31.4% 的 poster 论文、9% 被接收为 workshop track,51% 的论文被拒收、6.2% 的撤回率。而备受关注的论文《Matrix capsules with EM routing》作者也得以揭晓:Geoffrey Hinton 为一作,其他两位作者
许多深度学习框架和架构被研究人员用于不同的应用程序。近年来,在各种计算机视觉任务中取得了一系列的突破性的成果。深度学习对图像处理产生了令人印象深刻的影响。
选自arXiv 作者:Ilya Tolstikhin等 机器之心编译 参与:白悦、许迪 变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习主流的两类方法。近日,谷歌大脑 Ilya Tolstikhin 等人提出了又一种新思路:Wasserstein 自编码器,其不仅具有 VAE 的一些优点,更结合了 GAN 结构的特性,可以实现更好的性能。该研究的论文《Wasserstein Auto-Encoders》已被即将在 4 月 30 日于温哥华举行的 ICLR 2018 大会接收。 表示学习(
合成生物学研究本着师法自然、改造自然及超越自然的理念,其核心是通过人工方式将基因元件优化改造和重新组合,以得到满足需要的人工生物系统。获取性能优异的生物元件是构建和控制人工生物系统的基础。
本文将收集TensorFlow可生成的模型,列举出各种GANs和VAEs的Tensorflow实现。 生成对抗网络(GANs) 列表 GAN文章链接:https://arxiv.org/abs/140
Docker是什么 docker是用来做软件发布的一个软件,是一个工具; 用来打包软件运行环境和基于运行环境开发的软件; 打包好的运行环境(即系统)和基于运行环境开发的软件生成的东西叫镜像(image),类似我们装windows系统使用过的GHO、ISO等系统镜像; 运行在容器Container中,Container被docker管理; Container和image的关系就像鱼缸和鱼儿的关系,image是鱼儿,container是鱼缸; linux基础image远小于正常使用的linux系统,因为doc
待确认是否为redis的BUG,原因是进程实际占用的内存远小于配置的最大内存,所以不会是内存不够需要淘汰。
这一过程涉及疾病假说的确认、疾病或病理关键靶点的发现和验证、苗头化合物(hits)和先导化合物(leads)的筛选测试、先导化合物关键参数(药代动力学性质、安全性、生物利用度等)的同步优化、动物试验上活性和安全性的证实、被监管机构批准后的临床试验等。
官方原文地址:https://redis.io/topics/cluster-tutorial 水平有限,如果您在阅读过程中发现有翻译的不合理的地方,请留言,我会尽快修改,谢谢。 一个更有趣的示例程序 我们上边写的那个示例程序不够好玩。他以简单的方式写入到集群而没有检查写入的正确性。 从我们的观点看,集群接收写入命令可能每次操作总是把键foo写入 为42,并且我们一点也没有注意到。 所以在redis-rb-cluster库内,有一个更有趣的应用程序consistency-tes
最近开始看一本之前出版社老师赠送的书《图神经网络-基础、前言与应用》,开始系统地了解下图神经网络。
2021年10月25日,JCIM杂志发表MolGPT: Molecular Generation Using a Transformer-Decoder Model。该文章提出用Transformer-decoder模型进行分子生成。
小程序是一个以 wxapkg 为后缀的文件,在android手机的 /data/data/com.tencent.mm/MicroMsg/用户id/appbrand/pkg/ 里面找, 例如在我的测试手机里面就在
在以太坊上部署智能合约、发起交易需要花费以太币。而私链和公有链没有关系,不用同步大量的数据,也不用花钱购买以太币,可以很好的满足智能合约的开发和测试要求,而且在私有链上开发的智能合约可以很容易的部署到以太坊的公有链上。
实验工具: 1、WinDBG 2、IDA 3、Dependency Walker
SELECT COUNT(*) BZC144, NVL(SUM(BCF125), 0) BZC145, CF11.AAA020 FROM CF11, CF12 WHERE CF11.BCF110 = CF12.BCF110 AND CF11.AAE100 = ‘1’;
在图像方面,比如每天出入地铁安检,常常看到小姐姐小哥哥们坐在那盯着你的行李过检图像,类似如下(图来自GANomaly论文):
openstack虚拟机存放于ceph存储,由于用户将系统的grub误删除,导致系统无法正常引导。现在用户要求抢救文件。
如果直接套用PIL和OpenCV3图像处理库的旋转函数,旋转后保存的图像会留黑边,下面给出我实际测试后旋转图像不留黑边的代码:
这段视频由IET Media制作,IETMedia是IET内部的一个技术网络,它为广播行业的网络和教育举办活动、讲座和网络研讨会。
领取专属 10元无门槛券
手把手带您无忧上云