首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Orleans 知多少 | 4. 有状态的Grain

比如数据库等,Orleans 官方维护的状态持久化提供者有以下几种: Microsoft.Orleans.Persistence.AdoNet :封装了对SQL 数据库的支持,目前支持SQL Server...Providers、 ADO.NET Database Configuration,你会发现需要执行以下几步: Orleans Server 端添加对Microsoft.Orleans.Persistence.AdoNet...添加配置代码 为了简化配置,我做了一个简单的包装项目Orleans.AdoNet.Extensions,以简化SqlServer、MySql、Oracle和PostgreSql 的配置。...以Sql Server 为例,仅需: 通过Nuget包管理器安装Orleans.AdoNet.SqlServer包 安装后会打开一个readme.txt,复杂全部,并执行到数据库 服务端添加以下配置即可...Security=True;Pooling=False;Max Pool Size=200;MultipleActiveResultSets=True"; //use AdoNet

1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pycaret之集成模型(集成模型、混合模型、堆叠模型)

    1、集成模型 组装训练好的模型就像编写ensemble_model一样简单。它仅采用一个强制性参数,即经过训练的模型对象。...此函数可用于混合可以使用blend_models中的estimator_list参数传递的特定训练模型,或者如果未传递列表,它将使用模型库中的所有模型。...3、堆叠模型 堆叠模型是使用元学习的整合方法。堆叠背后的想法是建立一个元模型,该模型使用多个基本估计量的预测来生成最终预测。在PyCaret中堆叠模型就像编写stack_models一样简单。...此函数使用estimator_list参数获取训练模型的列表。所有这些模型构成了堆栈的基础层,它们的预测用作元模型的输入,可以使用meta_model参数传递该元模型。...restack参数控制将原始数据公开给元模型的能力。默认情况下,它设置为True。当更改为False时,元模型将仅使用基本模型的预测来生成最终预测。

    3K10

    星星模型&&雪花模型

    在多维分析的商业智能解决方案中,根据事实表和维度表的关系,可将常见的模型分为星型模型和雪花型模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星型模型还是雪花型模型进行组织。...星型模型 当所有维表都直接连接到“ 事实表”上时,整个图解就像星星一样,故将该模型称为星型模型。 ?...雪花模型 当有一个或多个维表没有直接连接到事实表上,而是通过其他维表连接到事实表上时,其图解就像多个雪花连接在一起,故称雪花模型。雪花模型是对星型模型的扩展。...雪花模型和星星模型的区别: 星型模型因为数据的冗余所以很多统计查询不需要做外部的连接,因此一般情况下效率比雪花型模型要高。星型结构不用考虑很多正规化的因素,设计与实现都比较简单。...在雪花模型中,数据模型的业务层级是由一个不同维度表主键-外键的关系来代表的。而在星形模型中,所有必要的维度表在事实表中都只拥有外键。 3)性能 第三个区别在于性能的不同。

    68230

    –AR模型,MA模型,ARMA模型介绍

    AR模型的定义 ————— AR模型平稳性判别 AR模型是常用的平稳序列的拟合模型之一,但并非所有的AR模型都是平稳的 。...第一个平稳的AR模型 这个AR模型的递推式子是x[t]=0.8*x[t-1]+e,其实e是一个误差项。...AR模型的一些性质 若AR模型满足平稳性条件,则他的均值为0,我们可以从上面的图中看出 AR模型的自相关系数是呈复指数衰减– 有拖尾性 AR模型的偏自相关系数有截尾性 注意第二,第三条很重要,后面可以用来做模型的识别...我在强调一遍 AR模型的自相关系数是呈复指数衰减– 有拖尾性 * AR模型的偏自相关系数有截尾性* MA模型 MA模型的定义 MA模型的可逆性 这个性质在推到MA模型的相关系数和自相关系数的时候比较有用...看一下可逆的定义 接下来看一下MA模型怎么转换成AR模型 最后我们看一下什么样的MA模型可以转化为AR模型 可逆MA模型的应用 对于一些MA模型,虽然其生成的式子不一样,但是其自相关图是一样的

    1.9K20

    【软件测试】敏捷模型(Scrum模型)和V模型、W模型

    敏捷模型 前面的那些模型以前非常流行,但现在开发人员在使用的时候会遇到各种问题。主要困难包括在项目开发期间处理来自客户的变更请求,以及合并这些变更所需要的高成本和时间。...在实际工作中,一款产品的功能是不断在变化的 所以为了克服这些缺点,就提出了敏捷软件开发模型。在敏捷模型中,需求被分解成许多可以增量开发的小部分。敏捷模型采用迭代开发。每个增量部分都是在迭代中开发的。...敏捷模型主要旨在帮助项目快速适应变更请求。...V 模型 V 模型中,明确的标注了测试过程中存在的不同类型的测试 右边的测试,都需要参考左边对应高度的要求 缺点: 仅仅把测试作为在编码之后的一个阶段,未在需求阶段就介入测试。...缺点和瀑布模型一样 W 模型(双 V 模型) V 模型中未将测试前置的问题在 W 模型中得以解决 开发 V 模型并不是单单指编码阶段,而是为产品开发流程而实施的各个阶段 测试的对象不仅是程序,需求、

    64310

    pycaret之训练模型(创建模型、比较模型、微调模型)

    1、比较模型 这是我们建议在任何受监管实验的工作流程中的第一步。此功能使用默认的超参数训练模型库中的所有模型,并使用交叉验证评估性能指标。它返回经过训练的模型对象。...2、创建模型 在任何模块中创建模型就像编写create_model一样简单。它仅采用一个参数,即型号ID作为字符串。...尽管有一个单独的函数可以对训练后的模型进行集成,但是在通过create_model函数中的ensemble参数和方法参数创建时,有一种快速的方法可以对模型进行集成。...3、微调模型 在任何模块中调整机器学习模型的超参数就像编写tune_model一样简单。它使用带有完全可定制的预定义网格的随机网格搜索来调整作为估计量传递的模型的超参数。...对于有监督的学习,此函数将返回一个表,该表包含k倍的通用评估指标的交叉验证分数以及训练有素的模型对象。对于无监督学习,此函数仅返回经过训练的模型对象。

    2.3K10

    瀑布模型&螺旋模型

    软件开发模型: 1.瀑布模型 1)软件概念阶段 用户需求 2)需求分析 软件需求 3)架构设计 架构文档 4)详细设计 模型设计 5)编码阶段 代码文档 6)测试阶段 瀑布模型的特点是在每个阶段的工作都清晰详尽...瀑布模型还有一个缺点是项目编码处在后半程,因此客户需要等待很长时间才能体验到产品,故此需要在早期就为用户提供一个体验的样本,这个样本就是产品原型。 瀑布模型非常适合使用在需求清晰且不易改变的情况。...除此之外,遇到一个需求非常清晰的客户是使用瀑布模型的一个重要前提。 2.螺旋模型 ? 螺旋模型兼顾了快速成型的迭代特征以及瀑布模型的系统化与严格监控。...螺旋模型最大的特点在于引入了其他模型不具备的风险分析,使软件在无法排除重大风险时有机会停止,以减小损失。 螺旋模型的特点是每阶段只完成特定部分的功能,循环渐进式的开发。...螺旋模型非常适合使用在客户需求经常发生变化或者客户需求不明确的情况。

    1.4K20

    生成模型&判别模型

    #生成模型 #判别模型机器学习中的判别式模型和生成式模型目录:基本概念用例子说明概念判别式模型和生成式模型的区别二者所包含的算法在机器学习中,对于有监督学习可以将其分为两类模型:判别式模型和生成式模型。...1.2 生成式模型这么做一般会对每一个类建立一个模型,有多少个类别,就建立多少个模型。...生成式模型: 是根据山羊的特征首先学习出一个山羊的模型,然后根据绵羊的特征学习出一个绵羊的模型,然后从这只羊中提取特征,放到山羊模型中看概率是多少,再放到绵羊模型中看概率是多少,哪个大就是哪个。...但是,生成式模型的概率分布可以有其他应用,就是说生成式模型更一般更普适。不过判别式模型更直接,更简单。两种方法目前交叉较多。由生成式模型可以得到判别式模型,但由判别式模型得不到生成式模型。3....判别式模型和生成式模型的区别3.1 判别式模型和生成式模型的对比图图片上图左边为判别式模型而右边为生成式模型,可以很清晰地看到差别,判别式模型是在寻找一个决策边界,通过该边界来将样本划分到对应类别。

    33600

    NHibernate介绍「建议收藏」

    =false;connection lifetime=50;min pool size=1;max pool size=500 adonet.batch_size...创建数据模型 NHibernate允许直接使用Plain Old CLR Objects (POCOs),而不用通过存储过程来直接和数据库交互。使用POCOs的一个优势在于不用绑定特定的持久化层。...相比较而言,有些ORM解决方案需要特殊属性,或者是基于模型对象,这些对象又是从特定的基类中继承而来的。 在NHibernate中不用特殊的修饰就可以让对象和持久化层交互。...要注意的是所有需要持久化的属性必须是虚拟的,并且要开启延迟加载,所有数据模型类中的公共方法必须是虚拟的,哪怕它们并没有包含到映射文件中。 通常来讲,最好把所有的属性都设置为虚拟的。...可以借助MyGeneration自动代码工具从数据表生成数据模型和对应的映射文件。

    76220

    模型分类之生成模型与鉴别模型

    一、生成模型与判别模型概述 生成模型是通过联合概率分布来求条件概率分布,而判别模型是通过数据直接求出条件概率分布,换句话说也就是,生成模型学习了所有数据的特点,判别模型则只是找出分界。 ?...二、生成模型与鉴别模型详细介绍 ? ? 三、生成模型与判别模型的优缺点 概率图分为有向图(bayesian network)与无向图(markov random filed)。...在概率图上可以建立生成模型或判别模型。有向图多为生成模型,无向图多为判别模型。 生成模型(Generative Model),又叫产生式模型。...所以生成模型和判别模型的主要区别在于:添加了先验概率 即:生成模型:p(class, context)=p(class|context)*p(context) 判别模型:p(class|context)...; (5)判别模型的性能比生成模型要简单,比较容易学习。

    1.4K20

    Jmm模型_fgls模型

    一、什么是JMM模型 Java内存模型(即Java Memory Model,简称JMM)本身是一种抽象的概念,是一种规范,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段...由于JVM运行程序的实体是线程,而每个线程创建时JVM都会为其创建一个工作内存(有些地方称为栈空间),用于存储线程私有的数据,而Java内存模型中规定所有变量都存储在主内存,主内存是共享内存区域,所有线程都可以访问...模型如下图: 如果线程想要通信的话要执行一下步骤: A线程先把本地内存的值写入主内存 B线程从主内存中去读取出A线程写的值 二、JMM模型的作用 由于Java是跨平台语言,在不同操作系统中内存都有一定的差异性...上面所说的步骤其实就是实现了线程之间的通信,但是不要以为线程之间的通信就是这么简单的,其实在Java中JMM内存模型定义了八种操作来实现同步的细节。...同时在Java内存模型中明确规定了要执行这些操作需要满足以下规则: 不允许read和load、store和write的操作单独出现。

    33140

    三大数据模型:星型模型、雪花模型、星座模型

    在数据仓库的建设过程中,根据事实表与维表的关系,经常将数据模型分为星型模型、雪花模型及星座模型,那么,这几种数据模型有什么区别呢?在前期规划设计时,又应该选择星型模型,雪花模型还是星座模型呢?...星型模型是最简单最常用的模型。星型模型本质是一张大表,相比于其他数据模型更合适于大数据处理。其他模型可以通过一定的转换,变为星型模型。 星型模型的缺点是存在一定程度的数据冗余。...雪花模型 当一个或多个维表没有直接连接到事实表上,而是通过其他维表连接到事实表上时,其图解就像多个雪花连接在一起,故称雪花模型。雪花模型是对星型模型的扩展。...其缺点是增加了主键-外键关联的几率,导致查询效率低于星型模型,并且不利于开发。 星座模型 星座模型也是星型模型的扩展。...对比 三种数据模型特点对比如下: 属性 星型模型(星座模型) 雪花模型 事实表 1张或多张 1张或多张 维表 一级维表 多层级维表 数据总量 多 少 数据冗余度 高 低 可读性 高 低 表个数 少 多

    12.9K21
    领券