展开

关键词

Python+OpenCV实现AI人脸识别身份认证系统(4)—人脸识别

本篇博文是Python+OpenCV实现AI人脸识别身份认证系统的收官之作,在人脸识别原理到数据采集、存储和训练识别模型基础上,实现人脸识别,废话少说,上效果图: ? 案例引入 在Python+OpenCV实现AI人脸识别身份认证系统(3)——训练人脸识别模型中主要讲述神经网络模型的训练过程,使用OpenCV模块中的LBPH(LOCAL BINARY PATTERNS HISTOGRAMS)人脸识别器算法(cv2.face.LBPHFaceRecogni zer_create()方法实现),训练生成“.yml”后缀的模型文件。 人脸识别的过程也非常简单,通过使用OpenCV模块读取“.yml”后缀的识别模型文件,实现人脸识别。 示例代码如下所示:

1K30

人脸识别 | Java 实现 AI人工智能技术 - 人脸识别-附源码

好了,跑偏了,今天康哥总结了AV、不,AI的新的技术点【人脸识别】,上几期的图像识别、语音识别、车牌识别、网络爬虫没来得及看的同学,请点击这里。 《Java 实现 AI 人工智能技术 - 语音识别功能》 《Java 实现 AI人工智能技术 - 网络爬虫功》 《使用 Java 实现AI人工智能技术-图像识别功能》 需求: 登录使用人脸识别登录 用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。 技术流程: 人脸图像采集及检测 人脸图像预处理 人脸图像特征提取 匹配与识别 识别算法: 基于人脸特征点的识别算法(Feature-based 优化的形变统计校正理论 独创的实时特征识别理论 开发步骤: 1:首先开通百度云-AI-功能账号,并创建应用,如下图 ?

13.1K131
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python+OpenCV实现AI人脸识别身份认证系统(3)—训练人脸识别模型

    目录 案例引入 本节项目 ---- 最近有小伙伴们一直在催本项目的进度,好吧,今晚熬夜加班编写,在上一节中,实现了人脸数据的采集,在本节中将对采集的人脸数据进行训练,生成识别模型。 首先简要讲解数据集训练生成模型的原理,这里使用的是LBPH算法,在OpenCV模块中已经有内嵌的方法cv2.face.LBPHFaceRecognizer_create(),为了方便小伙伴们读懂之后的代码,在这里先举一个简单的人脸模型训练的小案例 第一步:采集人脸数据,网络上有许多案例Demo,不再赘述,代码如下: import cv2 detector = cv2.CascadeClassifier('C:/Users/Administrator

    33230

    如何利用AI识别口罩下的人脸

    当前,市面上有很多人脸图像数据集,主要用于训练人脸检测算法。我们可以采用这样的数据集,在人脸上绘制口罩——于是我们就有了图像对。 ? 我们尝试了两个数据集。 这个数据集非常适合我们的情况,因为它包含的图像主要都是人脸。 这个网络具有泛化能力,并且似乎 可以很好地识别情绪,从而生成微笑或悲伤的面孔。另一方面,这里当然也有改进的空间。 我们期望这可以添加有关人脸及其特征的更多信息,以帮助 U-net 的上采样部分进行人脸修复。 neuronuggets-cut-and-paste-in-deep-learning-a296d3e7e876 原文链接: https://www.strv.com/blog/mask2face-how-we-built-ai-that-shows-face-beneath-mask-engineering

    37730

    基于OpenMV的人脸识别,支持人脸注册、人脸检测、人脸识别

    1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别 ,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It = 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir( ,但由于SD卡内无文件,无法匹配人脸 ? 按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。

    1.1K30

    人脸识别

    降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸 # 根据训练的数据来对新图片进行识别的过程。 ,其他可以不写   scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确   minNeighbors = 1, #为5表示有5次重叠才认为人脸存在   minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:

    98810

    人脸识别

    1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像 该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。

    1.5K90

    Android人脸识别识别人脸特征

    本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。 人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。 还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别 识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。 流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop

    2K30

    AI赋能,人脸识别技术应用的发展

    随着人工智能行业的发展,越来越多的技术趋于成熟可用,AI +模式赋能成为各行各业的升级方向,其中以人脸识别技术的应用最为普遍。 随着人工智能技术的不断发展,传统出租车行业正在得到AI技术的赋能,在智能出行的道路上快速前行。9月末,人工智能行业领军者之一百度在深圳举办了一场以人脸识别为主题的发布会。 并且,百度大脑强大的AI识别投诉机制,在问题发生的第一时间就能传递到平台方和手机APP预警,并且在车内的车载终端播报语音提醒,确保司机的危险行为都会有AI时刻监管,从某种意义上,实现了真正的安全出行。 AI加教育是很早以前就兴起的话题,就便捷性而言,新型教育优势是非常名显的,例如:一所知名大学2019级新生通过“刷脸”就能瞬间完成报到程序,系统是这所学校的学生研发的,学生对着摄像头,人脸识别系统就开始进行比对 抛却隐私问题,以及学生的心情感受问题,AI+教育中人脸识别技术的应用结果显而易见,无疑是非常成功的,可以帮助老师每时每刻精准识别学生的动态,例如:是否在认真听课、是否在开小差、是否在打瞌睡等等等等。

    51821

    高级AI:使用Siamese网络进行人脸识别

    通常在图像识别中我们会采用深度卷积神经网络,但这篇文章所谈及的Siamese网络并没有采用,它是如何做的呢? 这是一篇翻译的文章,原文链接:https://medium.com/swlh/advance-ai-face-recognition-using-siamese-networks-219ee1a85cd5 比如,假设我们想为公司建立一个人脸识别模型,大约有500人。如果从零开始使用 卷积神经网络(CNN) 构建人脸识别模型,那么我们需要所有这500人的许多图像来训练网络,以获得良好的准确性。 Siamese网络不仅用于人脸识别,还广泛用于没有很多数据点,以及需要学习两个输入之间的相似性的任务中。Siamese网络的应用包括签名验证、类似问题检索,对象跟踪等。 使用Siamese网络进行人脸识别 我们将通过构建人脸识别模型来创建Siamese网络。网络的目标是了解两张面孔是相似还是不同。

    73530

    LBPH人脸识别

    cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别 特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象 ) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离

    7730

    树莓派人脸识别实际应用:人脸识别门禁

    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给 import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别 : f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测 def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸 f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸

    79910

    python人脸识别

    目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片 8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别 /trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[: (gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别

    38520

    LDA人脸识别

    cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别 predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法 , num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值

    7910

    AI智能视频平台如何切换人脸识别算法?

    随着AI技术的阶段性成熟,人工智能应用已经在社会发展中的方方面面发挥着重要的作用。 安防监控行业被认为是人工智能技术落地应用最为广泛的领域之一。 目前我们正在积极研发人脸识别、车辆识别、车牌识别技术与视频监控平台的融合。今天来和大家分享一点开发实践技巧。 TSINGSEE青犀视频具有AI人脸识别能力的视频平台正处在研发阶段,平台的人脸识别算法分别接入了虹软和百度两种识别算法。若要切换人脸识别算法,可在配置文件中修改engine参数。 在过去的一两年,我们已经看到了大量的AI技术落地实例,在未来,AI技术将会有更多的场景落地应用。 近期TSINGSEE青犀视频也推出了基于边缘AI计算能力的硬件设备——AI安全生产摄像机,设备内置了多种AI深度学习算法,可实现的智能检测有烟火识别、安全帽/工作服检测、睡岗离岗检测、人员入侵检测等等。

    9420

    如何基于Python实现人脸识别AI接口的开发?

    大家知道我们的人脸识别已经在进行内测了,并会在不久的将来于EasyCVR及EasyGBS中进行测试。 目前人脸识别AI是基于Python实现,在输入RTSP流的时候会直接开始识别人脸,并进行对比人脸的相似度,来判断是不是同一个人。 face.face_search_from_video(path) def face_search_from_video(self, video_path, model='hog'): ''' 从一段视频中逐帧进行人脸识别 waitKey(1) # out_video.write(frame) ret, frame = input_video.read() 以上方法是直接使用RTSP流来进行人脸识别 ,如果想要进行所有的语言都要识别人脸,最快的方法就是将人脸识别做成http接口用来调用,所以就要分离各个识别的方法。

    14520

    人脸识别demo

    process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): # 将人脸面部信息画出来 'q'): break video_capture.release() cv2.destroyAllWindows() 需要的第三方库 face_recogniton是世界上最简单的人脸识别库了 你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸,该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了 99.38%,它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。 代码部分 效果 识别成功 [在这里插入图片描述] [在这里插入图片描述] 识别失败 [在这里插入图片描述] 完整代码 # -*- coding: utf-8 -*- # @Time : 2019

    11130

    PCA人脸识别

    ,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别 predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后 (降维),再进行数据分析和处理,获取识别结果。 num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象

    7620

    Android 人脸识别人脸注册

    该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别人脸识别,我们可以理解为从一个专门保存人脸特征值的数据集合中找到最匹配的一组特征值。 人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。 第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (! ,并且将人脸特征信息保存到本地,这个数据将会用于人脸识别获取人员信息的流程。

    2.3K30

    AI情感识别人脸未必是准确的情感信号

    问题不是在于像Amazon Rekognition这样的技术无法读取人脸的细节。而是人脸表情所表达的不一定是正确的情感信号。 问题不是在于像Amazon Rekognition这样的技术无法读取人脸的细节。而是人脸表情所表达的不一定是正确的情感信号。 我们对别人脸上的快乐表情有很强的直觉。从童年开始,我们就学会了面部表情和内心情绪之间的联系。即使是现在,当文本可能无法表达我们的情感时,我们也会使用表情符号(emoji)来表达我们的情感。 更恰当的描述应该是“表情识别”。 Barrett说:“目前任何一家声称能识别情绪的公司都会混淆测量结果(例如皱眉)和解释这些测量结果的含义(例如愤怒)。” 他说,想象一个场景,我们用奶酪和石头的例子来训练算法,开发出奶酪识别器。然后我们把它指向天空,看看识别器是否在有月亮的时候能识别出奶酪。Kappas 的类比揭示了商业情感识别技术是多么的初级。

    52430

    相关产品

    • AI 加速服务

      AI 加速服务

      腾讯云AI加速服务为企业提供AI模型训练、推理加速服务,支持多种框架和场景,显著提高模型训练推理效率,降低成本。

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券