比赛链接 https://www.heywhale.com/home/competition/620b34ed28270b0017b823ad/content/3 1 赛题背景 京东商品标题包含了商品的大量关键信息 ,商品标题实体识别是NLP应用中的一项核心基础任务,能为多种下游场景所复用,从标题文本中准确抽取出商品相关实体能够提升检索、推荐等业务场景下的用户体验和平台效率。 本赛题要求选手使用模型抽取出商品标题文本中的实体。 与传统的实体抽取不同,京东商品标题文本的实体密度高、实体粒度细,赛题具有特色性。 值得注意的是实体不仅仅与实体词有关,而且与当前标题所售卖商品有关。 举例说明,一个售卖产品为手机壳的商品标题中出现的“iPhone13”与售卖产品为手机的商品标题中出现的“iPhone13”为不同的实体标签。
2 基于EasyDL零售版的商品识别方案 将终端数据转化为数字资产 百度飞桨EasyDL零售版,针对快消零售业提供专业版服务,实现了低成本、高精度获取商品图像识别模型,完成智能化的店内陈列与费用核销。 通过 EasyDL 零售版,可以训练包含但不限于本品 SKU、竞品 SKU、POSM 助销物料、价签与价格等识别对象。 同时,还配套提供货架拼接、翻拍识别、空位识别、商品陈列层数识别、商品陈列场景识别等通用能力,从业务实际需求出发,有效获取网点真实商品分销和陈列数据,推动实时预警、及时跟进的市场策略落地,帮助快消品牌商顺利完成经营模式的数字化转型
2核2G云服务器 每月9.33元起,个人开发者专属3年机 低至2.3折
ArcFace: Additive Angular Margin Loss for Deep Face Recognition(CVPR2019) 简 介 利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力 在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。 背 景 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。 但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的 ArcFace相较于Triplet-Loss有更好的margin; 小结 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力
---- ©作者 | 康洪雨 单位 | 有赞科技 研究方向 | NLP/推荐算法 来自 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌 ▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。 用自己平台的商品标题去请求一些开放 NER 的 api,比如阿里云、腾讯云、百度 ai 等,有些平台的 api 是免费的,有些 api 每天可以调用一定次数,可以白嫖,对于电商领域,阿里云的 NER 效果比其他家好一些 而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。 多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力。 在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。 但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力。
人工智能一浪接一浪地席卷全球,AI的其中一个重要分支——计算机视觉,也如雨后春笋,不断涌现出新的想法和应用。 当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。 要让机器能够准确识别成千上万的快消商品SKU,是一项极其庞大而复杂的AI工程。 数据采集 2 让机器获得学习的原始素材 首先,我们需要梳理出所有的目标商品清单,并设法获得每一件商品的图片数据。 人脸都有眼睛、鼻子、嘴巴等固定的特征,而超市中琳琅满目的商品,则千奇百态。与人脸识别相比,商品识别有更高的工程复杂度。 ImageDT正在做的,就是实现这个庞大的AI工程,让机器能够自动地、准确地识别每一件商品。零售智能货架演示 ?
前两篇说了AI识别的准备和录入到腾讯云里,接下来我们就来编写一个从人脸库进行识别的功能,老样子那第一篇摄像头那里拉图片。因为有第二篇拉依赖库,这里就不在叙述了。直接来代码了。。 至此,我们就完成简单的AI识别功能人员。最后放出解释多层JSON的代码吧。。。
上次说到AI识别第一步就是获取图片并保存下来,相信很多小童鞋应该尝试了。接下来我们就开始对AI识别进行第二步,建立一个AI匹配库。 这个AI匹配库的作用就是把我们第一步获取的图片跟这个识别库进行匹配判断,看看匹配库有没有该图片。这次我们就上腾讯云进行部署。 1、首先登录腾讯云,找到“人脸识别”,点开“人员库管理”中的人员管理,选择“新建人员库”,填入相关的资料。当然这个有API的,不过我们直接手动建省很多事。
说到AI识别,很多人会觉得很神秘很高大尚。但随着科技的发展AI已经逐步成熟和简单,这几天我们就围绕如何打造一个AI识别系统进行宣讲吧。 首先AI识别系统,肯定是通过类似视觉识别这样,有图才能有结果,当然你说语音识别就要语音才有结果。不过语音不是咱们这次的重点。我们以视觉识别为主。 视觉识别肯定要通过摄像头获取外界或对应事物的情况,接下来,就是我们这篇文章的重点,如何在安卓上构建摄像头,也希望能使大家减少一些弯路。 这样我们的AI识别之旅就算踏出了第一~
比赛简介 主办方提供了商品名称和用户query数据供选手进行模型训练,希望选手能够设计出一套高效、精准的商品意图识别模型,以帮助提升电商搜索的效果,改善顾客的购买体验。 其中提供了两份数据,一个是goods_data.csv是商品名称数据,一个是query_data.csv是用户query数据,共39470条 前期我们做的尝试比较多,后面差不多烂尾了,庆幸b榜还在第一页 文本长度统计如下:商品名称数据中 文本字符长度最大为39,最小为6。我们在训练中选择了覆盖绝大部分数据长度的大小26,其余没有做过多尝试。
作者 | 康洪雨 单位 | 有赞科技 整理 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌、颜色、领型、适用人群、尺码等等 ▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。 用自己平台的商品标题去请求一些开放 NER 的 api,比如阿里云、腾讯云、百度 ai 等,有些平台的 api 是免费的,有些 api 每天可以调用一定次数,可以白嫖,对于电商领域,阿里云的 NER 效果比其他家好一些 而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。 多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
"商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现! 它就是全开源、轻量级的图像识别系统 PP-ShiTu。 ,同时对于商品识别中品类众多、外观相似和更新频繁的痛难点也提供了可参考的示范。 其实商品识别的能力远不仅如此,商超能够通过这项技术进行资产保护,降低运营成本;时尚行业能够通过这项技术,完成对秀场服装的大数据分析,把握时尚潮流;服装行业可以通过商品识别快速匹配产品材质和生产工艺等相关信息 知“人”善用,是提高战斗力的一大法宝;同样,将最先进的 AI 商品识别技术应用落地各行各业,也能够带来很多赋能革新,充分帮助 B 端客户提高效率、降低成本的同时,也能优化 C 端客户的直接体验。 未来,从设计到生产、从物流到销售,AI 商品识别,大有可为! 如果您想详细了解更多飞桨的相关内容,请参阅以下文档。
商品系统的设计与构建,从某种程度上来讲,就是围绕SPU和SKU来进行的。但是只有这两个粗浅的概念,并不足以描述一个商品信息,今天,我们一起来聊一聊商品到底有哪些信息,进一步完善商品系统的设计。 ? 说到商品的基本信息,我们不妨回过头来看看商品的发布流程。从页面上去寻找需要持久化的信息,从而达到抽象商品信息的目的。 ? 我们先看商品的基础信息,从页面直观的可以看出,有商品类型、商品名称,以及商品类目属性构成。 需要注意的是商品类型这个属性,考虑到我们构建的是一个B2C的站点,同时还需要兼容多商家2C的设计,那么应该从商品的售卖方去区分商品是属于自营还是第三方。 在编辑商品的时候,一般会要求填写条形码,如果一个商品是有条形码如果存在的话,那么这个条形码会在很多地方用到,比如采购、仓库、出纳,也有利于建立一套标准的商品编码。
对每个商品有个画像,其中最关键的指标是点击率、价格档位(8档)。 而且淘宝搜索结果给出的,是最有可能点击或者或者购买的商品。真是目标明确,且看人下菜。 原理分析 ? 淘宝搜索用了强化学习方法,来优化搜索结果排序策略Q。 状态s为把用户前2次点击的商品价格档位(0~7,从低到高)作为状态,作为强化学习智能体Agent感知到的状态、动作a是商品排序,对策略的奖励R是用户点击了或者购买了推荐的商品。 也就表示在状态上执行动作时,PV中所有商品能够被点击(或购买)的似然概率之和。经验项即: ? 这种奖励方式非常类似在迷宫游戏里,奖励函数不仅仅是在成功逃出迷宫给出一次性奖励,而且在迷宫里每一步都给予一个额外奖励(如距离出口越近奖励越大),引导AI快速逃出迷宫。
ai行为识别技术监控系统软件是一种以行为识别技术为关键技术的深度学习算法,根据人工智能化神经元网络,构造大家的主要模块架构,ai行为识别技术监控 依据我们的轨迹测算各种各样健身运动行为,根据视频转码技术 、流媒体播放技术、数字矩阵技术、云技术等,ai行为识别技术监控拍照的各类现场作业人员的异常行为,帮助监控工作人员提高解决各类出现异常紧急事件的效率。 ai行为识别技术监控具备普遍的应用领域,可以用在智能交通、智能化施工工地、智能制造系统、智慧校园、智能化生态公园等。只需有视频监控的地区,就可以完成覆盖识别分析。 ai行为识别技术监控是一种极致的视觉检测系统,应用人工智能视频分析优化算法对视频图象开展即时解析和识别,将监测到的信息与管理者给予的监控规则相对比,并即时消息推送信息和预警信息。 ai行为识别技术监控剖析,可以在紧急状况下开展预警信息,该技术关键完成了对视频监控具体内容数据的分析和获取主要信息内容,并在标识后产生警示。
适用基于主流模型架构衍生开发的各类应用,如人脸识别、ADAS、商品识别、疲劳检测等。RK3399具有高性能、高扩展、全能型应用特性。 Android 8.1能充分调用神经网络API(NNAPI)进行硬件加速, 使RK3399 的AI运算性能大幅提升。 :标准API,直接支持基于Android NNAPI开发的各类APK应用; 2、通用性强:可支持众多主流模型架构,适用于基于主流模型架构衍生开发的各类应用,包括人脸识别、ADAS、商品识别、疲劳检测等; AI计算正处于爆发增长期,瑞芯微人工智能芯片已广泛应用于图像识别、智能安防、智能驾驶、语音识别、消费类电子等领域。 本次公开基于RK3399平台Android 8.1 NNAPI的优化SDK,将使其AI芯片产品线更具硬实力
通过标识解析来识别当前生产的产品,从而调用相应的加工程序实现柔性制造,通过识别零部件上的一维、二维码,从而实现上万个零部件防伪、纠错,一次下线合格率上升2个百分点。 而标识解析技术的一物一码溯源防伪功能,可以有效识别假冒伪类产品识别,保证产品质量安全可靠。 在工业互联网的基础共性支撑技术——标识解析的推进上,忽米网走在行业前列。
腾讯云图像分析基于深度学习等人工智能技术,提供综合性图像理解、图像处理、图像质量评估等服务,包含图像标签、logo识别、动漫人物识别、植物识别等,可以用于智能相册、视频理解、AI营销等场景…..
扫码关注腾讯云开发者
领取腾讯云代金券