学习
实践
活动
专区
工具
TVP
写文章

数据挖掘!使用分析+AI进行保险欺诈检测 ⛵

通过查询语言进行可视化有助于分析大量数据并识别欺诈活动的模式。 典型的数据库如 Nebula Graph,我们本次的分析挖掘用到的数据集是 insurance claims 保险索赔数据,大家可以通过 ShowMeAI 的百度网盘地址下载。 使用分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub 欺诈典型案例查找欺诈性索赔 使用分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub具体的信息包括: 可以很清晰地看到:具有特征的模型表现出色节点级别特征效果非常好聚类特征对结果也有补充作用 总结对于关联型业务场景,我们可以查询、可视化和分析数据,构建有效的信息支撑更强大的商业欺诈方案,特别是对于试图通过复杂网络结构隐藏的欺诈活动

25541

提升DAU,数据分析怎么做

DAU涨啦,DAU又降啦; DAU又涨了,DAU又降啦…… 大量数据分析师的工作,就消耗在这种无聊的叨叨中。更糟糕的是:很多涨跌,只是单纯的开发埋点没做好,数据丢失等脑残问题导致的,没啥有价值发现。 数据分析师只能颤颤巍巍的答道:要!搞!高! 今天系统讲解下,这个僵局怎么破。 问题在于: 第一:这些手段运营自己都知道,根本不需要数据分析 第二:手段真管用? 大部分都是“人走茶凉”型的,治标不治本 那么,站在数据分析角度,如何摆脱像布谷鸟一样,每天喊“涨啦,跌啦”,真正分析出解决问题的关键呢? 数据分析的价值,在于在盲目推广中,找到更多刚性需求,从而降低成本,用更贴近用户需求的方法保持活跃。 只不过这样做,需要商品/活跃/优惠/内容/用户等方面,大量的基础数据建设。

26330
  • 广告
    关闭

    【新春盛惠】腾讯云大数据产品,爆品秒杀1折起!

    移动推送、BI、云数仓Doris、ES、数据湖DLC、WeData、流计算Oceanus,多款产品助您高效挖掘数据潜力,提升数据生产力!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    提升DAU,数据分析怎么做

    以下文章来源于接地气学堂 ,作者接地气的陈老师 DAU涨啦,DAU又降啦; DAU又涨了,DAU又降啦…… 大量数据分析师的工作,就消耗在这种无聊的叨叨中。 更糟糕的是:很多涨跌,只是单纯的开发埋点没做好,数据丢失等脑残问题导致的,没啥有价值发现。 当业务方来问:那我要拉升DAU,能做啥? 数据分析师只能颤颤巍巍的答道:要!搞!高! 问题在于: 第一:这些手段运营自己都知道,根本不需要数据分析 第二:手段真管用? 大部分都是“人走茶凉”型的,治标不治本 那么,站在数据分析角度,如何摆脱像布谷鸟一样,每天喊“涨啦,跌啦”,真正分析出解决问题的关键呢? 数据分析的价值,在于在盲目推广中,找到更多刚性需求,从而降低成本,用更贴近用户需求的方法保持活跃。 只不过这样做,需要商品/活跃/优惠/内容/用户等方面,大量的基础数据建设。

    14520

    数据分析怎么做才能“可执行”

    数据分析师作为第三方角色,可以输出更有说服力的答案。 站在数据分析角度,关注的不是某个具体idea,而是哪个套路更管用。所谓:方向不对,努力白费。结合数据,找到更好的套路,才是数据分析的作用方式。 想找套路,就要先研究套路。 这里需要数据分析师对常用的业务套路所有了解。比如在线课程,是有常用推广方式的: ? 当然,这种层层递进的逻辑方法,也是数据分析的短板。从经验上看,数据分析师做的方案往往倾向于保守,往往缺少创意,这些都是太过理性的后遗症。而实际上商业成功往往不是理性的结果。 然而,数据分析的独特吸引力也在这里。你会发现创意、机智、魅力是天生的,权力、运气可遇不可求的,胆识加在蠢人身上就是灾难。唯独数据分析能力是可以通过学习、训练、实验、记录来不断提升的。

    37210

    数据产品的竞品分析怎么做

    有和一些产品经理交流过关于竞品分析的体会,他们的问题相信你也曾经遇到过。 一、数据产品竞品分析的困惑 何时做分析,需求评审时却经常被开发或领导Diss,你知道竞品是怎么做的么? 竞品分析究竟什么时候、以什么样的频次去做呢? 竞品找不到,数据产品一般面向企业内部用户,因数据安全、商业机密等因素,内部产品资料很少对外共享。 还是以BI为例,tableau、帆软等传统的BI发展多年,QuickBI、观远数据在智能应用有更多的尝试,BI和AI结合的思想是不是可以学习和借鉴呢。 三、总结:数据产品竞品四要三不要 竞品分析的文章很多,本文主要结合数据产品的特性分享数据产品竞品分析的技巧,除了讲到的五个步骤三个方法外,还有几点建议,希望对你未来的数据产品工作有所帮助: 四要: 要养成定期做竞品分析的习惯 不要罗列功能缺少洞见,知道竞品是做什么的有什么功能不是目标,重要的是优缺点判断以及你准备怎么做的结论。 在做竞品分析过程中,你最常用的分析方法是什么,分析过程曾遇到过哪些困惑,是如何解决的呢?

    27721

    数据分析怎么做才够“精准”

    “用数据分析,精准定位用户,精准发现用户需求,精准推荐产品”是很多很多地方都在吹的故事。 好在互联网平台能记录数据,这也就是通过数据实现精准分析的前提。 ? 因此,精准不是一个绝对值,而是一个相对概念。 6 实现精准分析的步骤 正因为影响精准度的环节有很多,所以在实际开展项目的时候,一定要先清晰精准的目标,梳理业务流程,了解当前数据现状,了解业务方能在业务流程里做哪些事。 数据分析实现精准是需要过程,需要时间,需要经验积累的。把明显的问题先处理好,不然有太多的细节可以让人沉迷,最后也看不到效果改进。 这里做数据的新手很容易犯一个问题,就是:不看场景,直接怼模型。 所以业务方不要企图在精准营销之类工作中当甩手掌柜,认真的分享营销计划、投入费用、作战意图、内容创作、和数据分析共创,才是更好的提升之道。

    36230

    SEO工作中怎么做数据分析

    数据分析是SEO优化中一项非常重要的工作,数据分析是以现有网站的内容为基础,分析那些内容是用户点击比较多以及哪些内容用户更加受欢迎。从而更多展示用户喜欢的内容,降低网站的跳出率增加网站黏性。 数据分析能从很大程度上促进网站关键词排名。 1:发现问题。数据分析的前提是发现问题,如果只是盲目的寻找不同是难以发现数据体现的问题的。 关于网站的各种问题都可以提出然后带着问题去分析数据。 2:分析pv、uv、ip、跳出率和平均访问时长 pv、uv、ip是互相关联的。 5:分析页面点击和页面上下游 页面点击直观形象的展示用户的点击习惯,用户点击越多的地方颜色越趋向于深红色,浅一点的地方是绿色。 页面上下游反应的是用户从一个页面到另一个页面的浏览轨迹,页面上下游可以用谷歌分析工具分析。 (1)页面点击,可以根据页面点击调整网站首页布局。

    18230

    数据分析,该怎么做才能超出预期?

    有同学问:每次做的数据分析报告,业务方看了不是说“我早知道了”,就是说“你这不符合业务常识”。搞得人很郁闷。 比如最近一次,诊断业绩波动问题,分析了一堆流量*转化率*客单价数据,业务方却哈哈大笑,说跟这些都没关系,纯粹是大区经理的能力问题。面对这种局面该怎么办? _(¦3)∠)_ 今天统一解答一下。 很有可能在数据分析中根本回应不到这些结论,或者简单的鹦鹉学舌再重复一遍,这就会导致开篇的:“我早知道了”、“不符合业务常识”等问题。所以进行事先沟通,了解情况非常重要。 虽然嘴上不说,但内心里还是会认可分析的价值。 从问题出发,到行动结束 上边只是个简单的例子,还有更多可以深入的地方。有些同学看了会说:老师,这些看数据的维度,我们BI里也有。是滴,罗列数据是很简单的。 做数据分析,要从具体问题出发,到一个指向业务的行动结束。想要超出业务期望,当然得了解具体业务期望是什么,解答他们的问题,帮他们发现更深层的问题。

    32230

    数据分析,该怎么做才能超出预期?

    有同学问:每次做的数据分析报告,业务方看了不是说“我早知道了”,就是说“你这不符合业务常识”。搞得人很郁闷。 比如最近一次,诊断业绩波动问题,分析了一堆流量*转化率*客单价数据,业务方却哈哈大笑,说跟这些都没关系,纯粹是大区经理的能力问题。面对这种局面该怎么办? _(¦3)∠)_ 今天统一解答一下。 很有可能在数据分析中根本回应不到这些结论,或者简单的鹦鹉学舌再重复一遍,这就会导致开篇的:“我早知道了”、“不符合业务常识”等问题。所以进行事先沟通,了解情况非常重要。 虽然嘴上不说,但内心里还是会认可分析的价值。 从问题出发,到行动结束 上边只是个简单的例子,还有更多可以深入的地方。有些同学看了会说:老师,这些看数据的维度,我们BI里也有。是滴,罗列数据是很简单的。 做数据分析,要从具体问题出发,到一个指向业务的行动结束。想要超出业务期望,当然得了解具体业务期望是什么,解答他们的问题,帮他们发现更深层的问题。

    33710

    数据分析,该怎么做才能超出预期?

    有同学问:每次做的数据分析报告,业务方看了不是说“我早知道了”,就是说“你这不符合业务常识”。搞得人很郁闷。 比如最近一次,诊断业绩波动问题,分析了一堆流量*转化率*客单价数据,业务方却哈哈大笑,说跟这些都没关系,纯粹是大区经理的能力问题。面对这种局面该怎么办? _(¦3)∠)_ 今天统一解答一下。 很有可能在数据分析中根本回应不到这些结论,或者简单的鹦鹉学舌再重复一遍,这就会导致开篇的:“我早知道了”、“不符合业务常识”等问题。所以进行事先沟通,了解情况非常重要。 虽然嘴上不说,但内心里还是会认可分析的价值。 从问题出发,到行动结束 上边只是个简单的例子,还有更多可以深入的地方。有些同学看了会说:老师,这些看数据的维度,我们BI里也有。是滴,罗列数据是很简单的。 做数据分析,要从具体问题出发,到一个指向业务的行动结束。想要超出业务期望,当然得了解具体业务期望是什么,解答他们的问题,帮他们发现更深层的问题。

    27920

    toB和toC业务,数据分析怎么做

    很多同学很疑惑:为什么我做的数据分析和别人讲的差别那么大???有一个重要的原因,是数据分析的问题场景不一样。 而很多toB企业的数字化程度很低,沟通过程基本都靠销售自己完成,导致过程数据严重缺失。数据缺失,自然导致数据分析师很难分析出啥东西了。 其次,在toC业务里,线上业务和线下业务是两大有差异场景。 线下业务数据量很少,很多时候,连基础的RFM分析都做不了(因为没有用户ID),相当多的线下业务,是基于订单、工单、采购单等单据进行分析的,这一点让习惯了线上数据的同学们非常难受。 数据来源,运营方式,分析思路都不同。 所以,想做数据分析做得深入,具体问题,具体分析这八个字是非常重要的。具体到一个业务场景里,就容易讨论清楚。 如果只浮于表面,光说:“数据分析就是做对比”,谁跟谁比,比啥指标,比出来差异又咋解释,一窍不通,自然不能分析出好结果。

    27751

    Python数据分析--雷达

    最近阅读学习了林骥老师的《数据分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。 学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。 林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 引用林骥老师关于雷达的使用场景: 雷达的背景一圈一圈地像雷达,用多边形来展现数据的大小 endpoint=False) # 增加第一个 angle 到所有 angle 里,以实现闭合 angles = np.concatenate((angle, [angle[0]])) # 倒转顺序,以让雷达顺时针显示 set_thetagrids(angles*180/np.pi, labels=label) ax2.set_thetagrids(angles*180/np.pi, labels=label) # 画雷达

    60710

    Python数据分析--斜率

    最近阅读学习了林骥老师的《数据分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。 学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。 林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 斜率,可以快速展现两组数据之间各维度的变化,特别适合用于对比两个时间点的数据。 斜率的优势,是能快速看到每个类别前后发生的变化,并能根据线条的陡峭程度,直观地感受到变化的幅度。 df.values fig, axes=plt.subplots(2,3,figsize=(4, 6)) fig.set_facecolor('w') axes=axes.flatten() # 画斜率

    55830

    Python数据分析--哑铃

    最近阅读学习了林骥老师的《数据分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。 学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。 林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 首先介绍哑铃: 哑铃,是指用一条横线连接两个点、看起来有点像哑铃的,主要是用来强调从一个点到另一个点的变化 image.png 数据如下: 城市 2017 2018 郑州 109.05 103.47 洛阳 108.39 95.86 安阳 119.99 110.99 开封 102.13 103.24 焦作 110.68 < 0].iloc[:, 1], ymax=df[df['变化']< 0].iloc[:, 2], color=c['浅蓝色'], zorder=1, lw=5,label='下降') # 绘制哑铃两头的圆点

    91840

    Python数据分析--子弹

    最近阅读学习了林骥老师的《数据分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。 学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。 林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 子弹,它的样子有点像子弹,能够表达比较丰富的信息,例如表现好、中、差的取值范围,并突出显示实际值与目标值的差异情况 image.png 林老师GitHub子弹代码如下: # 导入所需的库 import numpy as np import matplotlib as mpl import matplotlib.pyplot family':'SimHei', 'color':'#00589F', 'size':15} # 标示制图的作者信息 ax2.text(1, 0.2, ' 制图:林骥\n' + r'$@$' + '数据分析

    22630

    数据分析怎么做才能有前瞻性

    其实只有一年的数据完全不说明问题,但是人们就是会很惯性的认为:过去跌的就一定跌,过去涨的就一定涨,特别出现这种5432顺序排列的数据,惯性的就会认为下个数字是1……其实这正是数据分析要打倒的大敌。 所以单纯用惯性思维判断,完全没有体现数据分析的价值,做的结论还极有可能是错误的。 错误三:习以为常。 还是上图数据,很多同学看了三年趋势,然后脱口而出:因为过去6月份会涨,所以今年6月份也会涨……这种说法,很有可能被业务评价为:我早知道了!你分析了啥! 虽然没有精确的数据或模型,但是能通过分析,判断未来走势(相对应的,建数据模型详细计算的是定量预测)。 做预测的关键,是找到影响未来的因素。这些影响因素,才是支撑指标曲线的真正支柱。 比如很多做数据分析的同学只看数据类文章,公众号只关注《数据分析XX》《数据挖掘XX》《python XX》反而每天沉迷在数字和代码里,对行业发生了什么看都看不到很容易被批了。

    55020

    怎么做数据分析数据分析的这些环节你不得不知

    很多刚开始做数据分析的朋友,不知道数据分析该如何下手,更不知道一个完整的数据分析流程有哪些环节。 数据分析的流程比较简单,主要包括以下六个环节:明确分析目的、数据获取、数据处理、数据分析数据可视化、结论与建议。 一、明确数据分析的目的 做事都是有目的的,数据分析也是。 在数据分析之前,我们首先要清楚为什么要进行数据分析? 四、数据分析 在上面的准备阶段后,我们需要明确数据分析思路,数据分析思路即数据分析方法,数据分析是以目的为导向的,通过目的选择数据分析方法。 一排排枯燥的数字,无法让业务部门或外部客户直观地理解数据背后的含义。俗话说“一胜千言”,我们需要将数据可视化。所以,BI可视化工具在数据分析中是不可或缺的!

    35700

    绘图技巧 | 这种精美的”排序怎么做?(附练习数据

    今天小编给大家介绍一种”凹凸(bump charts)“的绘制方法,其绘图函数主要来自R包-ggbump,本期的主要内容如下: R-ggbump包基本绘图简介 R-ggbump包实例演示 R-ggbump 包基本绘图函数简介 R-ggbump包主要包含:geom_bump()和geom_sigmoid(),两个函数主要绘制随时间变化的平滑曲线排名,内置参数也几乎相同,如下: ( mapping = NULL Example Of geom_sigmoid() 从以上也可以看出两个绘图函数所绘制的图形属于同一类别,下面我们通过实例数据进行两个绘图函数的理解。 Exercise Of geom_bump() 「样例二:」 第二个小例子,我们通过构建虚拟数据进行可视化结果绘制,如下: #读入数据 library(readxl) df<-read_excel(" 此外,小编还建议大家熟悉下用于定制化图表的相关语句哦,当然,如果喜欢用主题那就另当别论了哈~~ 数据获取 整理不易,感谢大家帮忙分享,关注本公众号(DataCharm)然后在公众号后台发送 练习数据06

    58530

    智能威胁分析数据构建

    不过,深度学习、机器学习技术不是AI技术的全部。在网络空间中,构建具备异常感知、事件推理和威胁响应能力的智能威胁分析平台,深度学习、机器学习可以作为数据处理的常规武器,而不是核心能力。 数据从来都是AI可用性的基础,典型的“感知-认知-行动”智能应用模式的作用对象也是数据。那么构建更加自动化、更智能的威胁分析能力,我们应该收集和分析哪些数据,又如何组织这些数据呢? 国外使用多源安全数据构建统一分析结构的项目还有Cauldron[3]。 网络安全数据结构中蕴含的基因,不仅仅是数据可视化的基础,更是用以对抗网络空间威胁的安全智能构建的基础。那么,智能威胁分析能力的构建需要那些数据的支撑呢? 三、构建智能威胁分析能力的关键数据 ? 四、 总结 针对网络空间智能威胁分析技术的研究,目的不是设计一个如何炫目的概念,也难以实现一个放之四海皆可用的AI安全模型。

    85210

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 图数据库 KonisGraph

      图数据库 KonisGraph

      图数据库KonisGraph(TencentDB for KonisGraph)是基于腾讯在社交网络、支付、游戏和音乐等业务场景超大规模图数据管理的经验积累,为您提供的一站式高性能海量图数据存储、管理、实时查询、计算和可视化分析的数据库服务。支持属性图模型和TinkerPop Gremlin查询语言,帮助用户快速完成对图数据的建模、查询和分析;支持百亿级节点、万亿级边的超大规模图数据中关联关系的查询分析。广泛适用于社交网络、金融支付、安全风控、知识图谱、广告推荐和设备拓扑网络等具有海量关系数据的场景。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券