学习
实践
活动
专区
工具
TVP
写文章

训练模型还要训练吗_多模态预训练模型

若使用已保存好的镜像reid_mgn:v1,在本机上可按如下操作训练 # 1.进入已保存环境的镜像(reid_mgn:v1(8.48G)、pytorch/pytorch:1.0.1-cuda10.0 personReID ufoym/deepo:testv1 /bin/bash (75服务器) # 2.进入到工程目录 cd /home/personReID/MGN-pytorch-master # 3.复制预训练模型到指定路径 打开另一个终端 docker ps 查看容器内镜像(找到reid_mgn:v1 前对应的数字字符串%%%%) docker stats %%%%% 实时监测内存情况 # 4.训练 (在原终端继续进行,注:demo.sh是已改好参数的) sh demo1.sh 补充: 训练前需要修改的文件及代码 1.demo.sh文件 修改data路径(把你的数据集路径添加到 –datadir)、 :需将数据集文件名由原始的Market-1501-****改为和代码匹配的Market1501 2.trainer.py 修改train、test中的epoch 3.main.py 如果是单GPU训练

7620

如何借助 JuiceFS 为 AI 模型训练提速 7 倍

本文来自:JuiceFS官网博客 背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储、管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情 Pipeline 是很重要的一个部分,AI 任务并不只是由模型训练这一个步骤组成,还包括数据预处理、特征工程、模型验证、模型评估、模型上线等多个环节,因此 Pipeline 管理也是非常重要的。 对于 AI 模型训练场景来说,第一个 epoch 完成之后后续的计算都可以直接从缓存中获取训练数据,极大地提升了训练效率。 JuiceFS 配置选项说明 AI 模型训练场景的 I/O 模式是典型的只读模式,即只会对数据集产生读请求,不会修改数据。 总结及展望 本文介绍了在 AI 模型训练中如何充分利用 JuiceFS 的特性来为训练提速,相比直接从对象存储读取数据集,通过 JuiceFS 可以带来最多 7 倍的性能提升。

30520
  • 广告
    关闭

    新年·上云精选

    热卖云产品新年特惠,2核2G轻量应用服务器9元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    前端搞AI:在浏览器中训练模型

    识别鸢尾花 本文将在浏览器中定义、训练和运行模型。为了实现这一功能,我将构建一个识别鸢尾花的案例。 接下来,我们将创建一个神经网络。 我们需要采取的第一步是将这个数据集拆分为训练集和测试集。 这样做的原因是我们将使用我们的训练集来训练我们的算法和我们的测试集来检查我们的预测的准确性,以验证我们的模型是否可以使用或需要调整。 一旦我们的模型准备就绪,我们就可以使用我们的数据对其进行训练: async function train_data(){ for(let i=;i<;i++){ const res 例如,如果分类的输出为 [0.0002, 0.9494, 0.0503],则数组的第二个元素最高,因此模型预测新的输入很可能是 Virginica。 link rel="stylesheet" href="src/styles.css"> </head> <body>

    使用 Tensorflow.js 在 JavaScript 中定义、训练和运行机器学习模型

    15710

    finemolds模型_yolo模型训练

    在已有模型上finetune自己的数据训练一个模型 1、准备训练数据和测试数据 2、制作标签 3、数据转换,将图片转为LMDB格式 前三步的过程和 如何利用自己的数据训练一个分类网络 是一样的,参考处理即可 /type" # uncomment the following to default to CPU mode solving type: "AdaDelta" solver_mode: GPU 6、训练模型 #网络结构描述文件 deploy_file = caffe_root+'models/finetune_test/deploy.prototxt' #训练好的模型 model_file = caffe_root +'models/finetune_test/models/solver_iter_15000.caffemodel' finetune的好处 如果我们想自己训练一个效果较好的模型,需要大量的数据,非常优秀的硬件条件 ,以及漫长的训练时间,但是,我们可以利用现有的caffemodel模型训练利用较少的数据训练一个效果较好的模型

    8350

    模型训练技巧

    模型训练技巧 神经网络模型设计训练流程 图1-1 神经模型设计流程 当我们设计并训练好一个神经网络之后,需要在训练集上进行验证模型效果是否良好。 这一步的目的在于判断模型是否存在欠拟合;在确定已经在训练集上拟合的很好,就需要在测试集上进行验证,如果验证结果差就需要重新设计模型;如果效果一般,可能需要增加正则化,或者增加训练数据; 欠拟合处理策略 集成学习的做法大致是,从训练集中采样出多笔数据,分别去训练不同的模型模型的结构可以不同)。用训练出的多个模型分别对测试集进行预测,将最终的结果进行平均(如图1-16所示)。 因此,每个神经元有2种选择,而M个神经元就有2M选择,对应的就可以产生2M种模型结构。因此,在训练模型时,就相当于训练了多个模型。 对于模型中的某个权重是,在不同的dropout的神经网络中是共享的。 图1-17 dropout训练过程 但是,在训练好之后,需要进行预测。但是无法将如此多的模型分别进行存储,并单独预测。

    13520

    lr模型训练_GBDT模型

    分类模型 本质上是线性回归模型 优化目标 J ( θ ) = ∑ − y i l o g ( h ( θ T x i ) ) − ( 1 − y i ) l o g ( 1 − h frac{1}{1+e^{-\theta^Tx}} h(θTx)=1+e−θTx1​,是sigmoid函数 linear regression和logistic regression都属于广义线性模型 ,linear regression是将高斯分布放在广义线性模型下推导得到的,logistic regression是将伯努利分布放在广义线性模型下推导得到的,softmax regression是将多项式分布放在广义线性模型下推导得到的 推导请见: https://www.zhihu.com/question/35322351/answer/67117244 LR和linear SVM的异同 同: 都是线性分类器,模型求解的是超平面 SVM自带正则,LR需要添加上正则项 根据经验来看,对于小规模数据集,SVM的效果要好于LR,但是大数据中,SVM的计算复杂度受到限制,而LR因为训练简单,可以在线训练,所以经常会被大量采用

    10020

    模型、算法和训练的关系,及迁移学习 | AI基础

    通常形容AI语境下的模型一词时,比较多的情况会类比数学领域的函数。不过个人感觉,那样比较容易跑偏,不如我们先姑且将它理解成是“一个程序”吧。 训练程序和算法 这个训练模型的程序(简称训练程序),一般情况下是实现了某一种训练算法,这个算法接受输入的数据,进行某些运算,运算的结果就形成了模型。 ? 训练程序运行的过程就叫做训练模型训练程序的输出,训练的结果。 概念间的关系 说到这里,我们已经涉及到了四个概念:A.普通程序;B. 模型;C. 训练程序;和D.算法。 而动态则是说:C(训练程序)在获得不同的输入后会输出不同的B(模型)。 训练训练数据与模型训练程序在获得不同的输入数据后输出不同的模型”——这是什么意思? 那么我们可以: 方式 i)用Dataset_2从头开始训练,可以获得模型b2; 或者,方式 ii)将b1作为预训练模型,在它的基础上,用Dataset_2继续训练,获得模型b1’。

    2.8K52

    系统日报-20220318(大模型并行训练框架 Colossal-AI

    以GPT3为代表的大深度学习模型是现在很火的技术,Colossal-AI 的目标就是解决大模型训练过程遇到的各种分布式难题。 最近几年的 AI 模型正在急速变大,训练常常需要需要多个 GPU,比如训练 GPT3 需要几千个 GPU。因此,在多个 GPU 上分布式训练前沿 AI模型已经成为业界常态。 深度学习训练周期内需要管理两种数据。模型数据,训练中不断更新的模型参数,也是最后拿去线上推理的模型。Activation(a.k.a. Feature Map):每一层输出的中间结果,训练过程中每个神经网络层的输出。 Colossal-AI 实现的分布式训练技术包括数据并行、张量并行、流水线并行、ZeRO并行和 offload 并行。 AI System 领域演化和分布式数据库越来越相近,也许未来会有一种数据库专门管理大模型训练模型数据。他山之石可以攻玉,感兴趣小伙伴可以点击 “阅读原文” 去围观一个。

    32520

    ARK Invest最新报告 :AI训练成本下降了100倍,但训练最先进AI模型的成本惊人

    两年间,AI训练成本下降了100倍 方舟评估委员会在其报告中发现,从1960年到2010年,按照摩尔定律,用于训练AI算力翻了一番。 OpenAI观察到16个月AI模型的效率倍增时间(任意给定时间的最低计算点用蓝色表示,测量点用灰色表示) 据 OpenAI 介绍,它发现谷歌的 Transformer 架构超越了以前由谷歌开发的最先进模型 AI发展尚处于初期阶段,训练最先进AI模型的成本依然惊人 方舟投资报告指出, 硬件和软件的突破使得AI训练成本下降。 值得注意的是,虽然AI模型训练的费用似乎在下降,但是在云中开发复杂ML模型仍然昂贵得让人望而却步。 ? OpenAI 花费了1200万美元来训练它的 GPT-3语言模型。 而谷歌花费了大约6912美元来训练 BERT,这是一种双向变换模型,它重新定义了11种自然语言处理任务的最新技术。

    61340

    无代码AI开发平台真香?AI研究员指责训练模型存在偏见

    但伦敦玛丽女王大学的AI研究员却警告到:这类平台可能会让训练后的模型产生偏见,而用户可能完全不知道。开发商对此番言论表示很有意见:用户数据的锅,我们不背! 图像的偏见问题在计算机视觉领域中尤其严重,CV模型在接收训练图像的过程中极易受到偏差的影响,即使背景的变化也会影响模型的准确性,甚至不同相机拍出来的照片对准确率也有影响。 自然语言模型也已被证实存在偏见,如果训练语料来自Reddit的帖子内容,那训练后的模型对种族、民族、宗教和性别方面的偏见将更严重,例如黑人可能与负面情绪的相关性更大。 开发商怎么说? 考虑到用户训练模型的数据通常都是自己提供的,Bill认为所以把锅完全甩给开发商,我们是不认的。 还有一个事实是模型偏见不仅仅来自训练数据集。 使用AI模型的企业应该能够很容易地指出模型是如何通过AI开发平台的支持证据做出决策的,让用户对训练好的模型的道德和法律影响充满信心。

    27420

    5.训练模型之利用训练模型识别物体

    接下来我们开始训练,这里要做三件事: 将训练数据上传到训练服务器,开始训练。 将训练过程可视化。 导出训练结果导出为可用作推导的模型文件。 可视化训练过程 将训练过程可视化是一个很重要的步骤,这样可以随时检查学习的效果,对后期的模型调优有很大的指导意义。 OK,现在是时候喝点咖啡,6 个小时以后来收获训练结果了。 导出模型文件 大约 6 个小时以后,模型训练好了。 现在可以根据业务需求自行的进行训练并应用训练结果了,鼓掌! 可能有人会问,我们用一个可以识别很多其他物体的模型做转移学习,训练出来了一个可以识别熊猫的模型,那么训练出来模型是不是也可以识别其他物体呢。 答案是否定的,你不能通过转移学习向一个已经训练好的识别模型里面增加可识别的物体,只能通过转移学习来加速你自己模型训练速度。

    1.1K40

    PyTorch 实战(模型训练模型加载、模型测试)

    本次将一个使用Pytorch的一个实战项目,记录流程:自定义数据集->数据加载->搭建神经网络->迁移学习->保存模型->加载模型->测试模型 自定义数据集 参考我的上一篇博客:自定义数据集处理 数据加载 此时拟合目标就变为F(x),F(x)就是残差: [在这里插入图片描述] * 训练模型 def evalute(model, loader): model.eval() correct pytorch保存模型的方式有两种: 第一种:将整个网络都都保存下来 第二种:仅保存和加载模型参数(推荐使用这样的方法) # 保存和加载整个模型 torch.save(model_object , 'model.pkl') model = torch.load('model.pkl') # 仅保存和加载模型参数(推荐使用) torch.save(model_object.state_dict( model.pkl则是第一种方法保存的 [在这里插入图片描述] 测试模型 这里是训练时的情况 [在这里插入图片描述] 看这个数据准确率还是不错的,但是还是需要实际的测试这个模型,看它到底学到东西了没有

    51220

    8,模型训练

    一,分类模型训练 ? ? ? ? ? ? ? ? ? 二,回归模型训练 ? ? ? ? ? ? ? ? 三,聚类模型训练 KMeans算法的基本思想如下: 随机选择K个点作为初始质心 While 簇发生变化或小于最大迭代次数: 将每个点指派到最近的质心,形成K个簇 重新计算每个簇的质心 ? 四,降维模型训练 PCA主成分分析(Principal Components Analysis)是最常使用的降维算法,其基本思想如下: 将原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合 五,管道Pipeline的训练 使用管道可以减少训练步骤 有时候,我们可以用管道Pipeline把多个估计器estimater串联起来一次性训练数据。 可以结合FeatureUnion 和 Pipeline 来创造出更加复杂的模型。 ?

    26331

    什么叫训练模型

    根据上面的计算过程可知,下图的神经网络模型果然比较符合现实情况。带游泳池的首先大概率属于高档房,其次价格也比较高。不带游泳池的 属于低档房,而且价格较低。 为什么同样的模型,判断出的结果不一样呢? 所以找好的模型的过程,就是找到他们合适的参数, 这就叫训练模型。对于判断房 子这件事儿。如果我们要是个房产经纪的话,我们其实在日常的工作中,在不断总结更正这些参数,不断的完善这个人工网络模型。 让我们这个模型,对各种各样的 输入值都是正确的。人工智能这个学科也是在做这件事儿,通过不断的训练,让你的模型的参数越来越正确。从而对于输入的各种值,判断结果都是正确的。

    71100

    训练模型

    多项式回归 依然可以使用线性模型来拟合非线性数据 一个简单的方法:对每个特征进行加权后作为新的特征 然后训练一个线性模型基于这个扩展的特征集。 这种方法称为多项式回归。 注意,阶数变大时,特征的维度会急剧上升,不仅有 an,还有 a^{n-1}b,a^{n-2}b^2等 如何确定选择多少阶: 1、交叉验证 在训练集上表现良好,但泛化能力很差,过拟合 如果这两方面都不好, 上图显示训练集和测试集在数据不断增加的情况下,曲线趋于稳定,同时误差都非常大,欠拟合 欠拟合,添加样本是没用的,需要更复杂的模型或更好的特征 模型的泛化误差由三个不同误差的和决定: 偏差:模型假设不贴合 ,高偏差的模型最容易出现欠拟合 方差:模型训练数据的微小变化较为敏感,多自由度的模型更容易有高的方差(如高阶多项式),会导致过拟合 不可约误差:数据噪声,可进行数据清洗 3. 线性模型正则化 限制模型的自由度,降低过拟合 岭(Ridge)回归 L2正则 Lasso 回归 L1正则 弹性网络(ElasticNet),以上两者的混合,r=0, 就是L2,r=1,就是 L1 image.png

    18840

    4.训练模型之准备训练数据

    终于要开始训练识别熊猫的模型了, 第一步是准备好训练数据,这里有三件事情要做: 收集一定数量的熊猫图片。 将图片中的熊猫用矩形框标注出来。 将原始图片和标注文件转换为TFRecord格式的文件。 收集熊猫图片倒不是太难,从谷歌和百度图片上收集 200 张熊猫的图片,应该足够训练一个可用的识别模型了。 最后需要将数据集切分为训练集合测试集,将图片文件打乱,然后按照 7:3 的比例进行切分: random.seed(42) random.shuffle(all_examples) 最后还需要一个 label map 文件,很简单,因为我们只有一种物体:熊猫 label_map.pbtxt: item { id: 1 name: 'panda' } 训练一个熊猫识别模型所需要的训练数据就准备完了 ,接下来开始在 GPU 主机上面开始训练

    1.1K80

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • TI-ONE 训练平台

      TI-ONE 训练平台

      智能钛机器学习平台是为 AI 工程师打造的一站式机器学习服务平台,为用户提供从数据预处理、模型构建、模型训练、模型评估到模型服务的全流程开发支持。智能钛机器学习平台内置丰富的算法组件,支持多种算法框架,满足多种AI应用场景的需求。自动化建模(AutoML)的支持与拖拽式任务流设计让 AI 初学者也能轻松上手。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券