学习
实践
活动
工具
TVP
写文章

Android划矩形截屏并加入OCR识别

前面文章《Android SurfaceVeiw划矩形截屏存放到RecyclerView中》已经通过手指划矩形把图片存入到RecyclerView中了,以前也加入过TeseractOCR的识别,因为截取的图像不理解 代码实现 每次重新搭新框架确实好麻烦,所以我们还在原来的那个DEMO上直接加入OCR的模块。 build.gradle中右侧红框的中的目录里原来已经存放了对应的OCR的动态库,这里我们就没再修改,动态库如下图 ? ? 在dependencies中要加入api 'com.rmtheis:tess-two:8.0.0',这样我们才能使用OCR识别。 OCR相关的类 ? =new StringBuilder(); // 核心预设置代码 tessAPI=new TessBaseAPI(); //如果Android

87510

Android使用Tesseract-ocr进行文字识别

前言 Tessseract是一款由HP实验室开发由 Google 维护的开源 OCR(Optical Character Recognition , 光学字符识别)引擎。能够支持中文十分难得。 Tesseract-OCR下载地址 文字识别一般都用的tesseract-ocr。 GitHub:https://github.com/tesseract-ocr/tesseract 我们今天在Android上应用推荐的有个tess-two GitHub:https://github.com chi_sim.traineddata中文简体,chi_tra.traineddata中文繁体,eng.traineddata 英文库) GitHub: https://github.com/tesseract-ocr > <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:app="http://schemas.android.com

6.1K40
  • 广告
    关闭

    2022腾讯全球数字生态大会

    11月30-12月1日,邀您一起“数实创新,产业共进”!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Android平台OCR工具之Tess-two的编译

    1.Tesseract简介 Tesseract是Ray Smith于1985到1995年间在惠普布里斯托实验室开发的一个OCR引擎,曾经在1995 UNLV精确度测试中名列前茅。 现阶段的Tesseract由Google负责维护,是最好的开源OCR Engine之一,并且支持中文。 主页地址:https://github.com/tesseract-ocr 在Tesseract的主页中,我们可以下载到Tesseract的源码及语言包,常用的语言包为 中文:chi-sim.traineddata 英文:eng.traineddata 2.Tess-two 因为Tesseract使用C++实现的,在Android中不能直接使用,需要封装JavaAPI才能在Android平台中进行调用,这里我们直接使用 我编译的Tess-two要求,Android 2.3 或更高版本,v3.04 trained data file  for a language.

    37440

    Android平台OCR工具之Tess-two的编译

    1.Tesseract简介 Tesseract是Ray Smith于1985到1995年间在惠普布里斯托实验室开发的一个OCR引擎,曾经在1995 UNLV精确度测试中名列前茅。 现阶段的Tesseract由Google负责维护,是最好的开源OCR Engine之一,并且支持中文。 主页地址:https://github.com/tesseract-ocr 在Tesseract的主页中,我们可以下载到Tesseract的源码及语言包,常用的语言包为 中文:chi-sim.traineddata 英文:eng.traineddata 2.Tess-two 因为Tesseract使用C++实现的,在Android中不能直接使用,需要封装JavaAPI才能在Android平台中进行调用,这里我们直接使用 我编译的Tess-two要求,Android 2.3 或更高版本,v3.04 trained data file for a language.

    33020

    OCR material

    :基于CNN的实现 blog: http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/ I Am Robot: (Deep) Learning to Break github: https://github.com/tmbdev/clstm caffe-ocr: OCR with caffe deep learning framework github: https ://github.com/pannous/caffe-ocr Digit Recognition via CNN: digital meter numbers detection ? github(caffe): https://github.com/SHUCV/digit Attention-OCR: Visual Attention based OCR ? github: https://github.com/da03/Attention-OCR umaru: An OCR-system based on torch using the technique

    69740

    OCR识别

    最近作者项目中用到了身份证识别跟营业执照的OCR识别,就研究了一下百度云跟腾讯云的OCR产品接口。 1.腾讯云OCR ---- 收费:身份证OCR和营业执照OCR接口,每个接口每个月各有1000次的免费调用 接口说明: 身份证OCR接口 -  https://cloud.tencent.com/document 2.百度OCR ---- 通过以下步骤创建OCR应用,作者当时在这一步花了很长时间 ? ? 创建完之后就可以拿到appId,API Key,Secret Key,就可以调用百度提供的api了 收费:身份证OCR和营业执照OCR接口,每个接口每天各有500次的免费调用 接口说明: 身份证OCR 营业执照OCR接口- https://cloud.baidu.com/doc/OCR/OCR-API.html#.E8.90.A5.E4.B8.9A.E6.89.A7.E7.85.A7.E8.AF.86

    5.3K51

    OCR Tool PRO Mac(OCR光学字符识别)

    推荐这款OCR光学字符识别工具OCR Tool PRO,以卓越的准确性和速度从图像和 PDF 中提取文本。 抓取图像 + PDF + 抓取屏幕区域 + 从 iPhone/iPad 捕获图像 + 设置 + OCR + 将文本复制到剪贴板 + 使用文本文件和 PDF 导出! OCR Tool PRO Mac图片OCR Tool PRO版软件功能OCR 工具允许在选定区域中捕获具有任何文本的屏幕的一部分。它可以立即被识别并复制到剪贴板。 OCR 工具是一种简单、易于使用、超级高效且尊重您的隐私(不会从您的设备中获取数据)。 主要特点抓取屏幕区域以实现超高效的 OCR多次抓取屏幕区域以快速工作从 iPhone/iPad 和扫描仪捕获图像以进行即时 OCR 并将结果复制到剪贴板。

    14220

    OCR技术简介

    OCR的应用场景 根据识别场景,可大致将OCR分为识别特定场景的专用OCR和识别多种场景的通用OCR。比如现今方兴未艾的证件识别和车牌识别就是专用OCR的典型实例。 OCR的技术路线 典型的OCR的技术路线如下图所示 ? 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。 Attention OCR的网络结构[11] 端到端的OCR 与检测-识别的多阶段OCR不同,深度学习使端到端的OCR成为可能,将文本的检测和识别统一到同一个工作流中。 FOTS的总体结构[12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。 因此我们仍需要从传统方法中汲取经验,使其与深度学习有机结合进一步提升OCR的性能表现。

    1.3K50

    OCR技术简介

    OCR的应用场景 根据识别场景,可大致将OCR分为识别特定场景的专用OCR和识别多种场景的通用OCR。比如现今方兴未艾的证件识别和车牌识别就是专用OCR的典型实例。 OCR的技术路线 典型的OCR的技术路线如下图所示 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。 在传统OCR技术中,图像预处理通常是针对图像的成像问题进行修正。 [11] 端到端的OCR 与检测-识别的多阶段OCR不同,深度学习使端到端的OCR成为可能,将文本的检测和识别统一到同一个工作流中。 [12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。

    6.6K20

    OCR技术综述

    最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。 什么是OCR? 比如汉王OCR,百度OCR,阿里OCR等等,很多企业都有能力都是拿OCR技术开始挣钱了。 太多太多的应用了,OCR的应用在当今时代确实是百花齐放啊。 OCR的分类 如果要给OCR进行分类,我觉得可以分为两类:手写体识别和印刷体识别。 OCR流程 现在就来整理一下常见的OCR流程,为了方便描述,那就举文档中的字符识别为例子来展开说明吧。 针对传统OCR解决方案的不足,学界业界纷纷拥抱基于深度学习的OCR。 这些年深度学习的出现,让OCR技术焕发第二春。

    4.8K92

    OCR 转 XSS

    光学字符识别 (OCR) 是从图像或任何文档(如 PDF)中以电子方式提取文本并以多种方式重复使用的过程,例如全文搜索、发票处理、文档验证等。 我将tesseract用于 OCR 以及一个简单的烧瓶服务器,该服务器接受图像作为输入,它解析并将提取的内容反射回管理员或其他用户。你可以在这里找到代码。 开始点击 python ocr.py 现在访问本地服务器 127.0.0.1:5000 上传以上文件 现在访问 /admin/ocr/files 你会看到警报 image.png 同样,创建带有标签或盲 image.png 回复: image.png 修复: 如果您使用 OCR 服务,不仅要使用文件名,还要在将图像或 pdf 中提取的文本存储到数据库之前对其进行清理。 如果是,则可能在某个地方正在使用它,并且如果没有检查输出文本是如何反映的,那么它可能会导致 XSS,尤其是使用 OCR 服务的应用程序。

    15240

    Tesseract OCR初探

    tesseract对Android的支持 github中有demo,https://github.com/rmtheis/android-ocr,它还需要https://github.com/rmtheis Tesseract Tools for Android是Tesseract OCR和Leptonica图像处理库的Android API与构建文件的集合。 tess-two封装Tesseract的Android API,eyes-two封装leptonica的Android API。tess-two-test为OCR的测试。 测试一 用github上的android-ocrhttps://github.com/rmtheis/android-ocr。 导入之后,工程名称自动为OCRTest。 这个例子的代码在https://github.com/GautamGupta/Simple-Android-OCR,试了一下发现这个例子和“测试二”比较像,识别率低。因此也不作考虑了。

    18210

    OCR技术浅析

    以深度学习兴起的时间为分割点,直至近五年之前,业界最为广泛使用的仍然是传统的OCR识别技术框架,而随着深度学习的崛起,基于这一技术的OCR识别框架以另外一种新的思路迅速突破了原有的技术瓶颈(如文字定位、 笔者针对业务中的身份证照片文字识别需求分别尝试了传统OCR识别框架及基于深度学习的OCR识别框架。下面就以身份证文字识别为例分别简要介绍两种识别框架。 传统OCR技术框架 如上图所示,传统OCR技术框架主要分为五个步骤: 首先文本定位,接着进行倾斜文本矫正,之后分割出单字后,并对单字识别,最后基于统计模型(如隐马尔科夫链,HMM)进行语义纠错。 在给定O序列情况下,通过维特比算法,找出最优序列S: 传统OCR冗长的处理流程以及大量人工规则的存在,使得每步的错误不断累积,而使得最终识别结果难以满足实际需求。接下来讨论基于深度学习的OCR。 可见,基于深度学习的OCR识别框架相比于传统OCR识别框架,减少了三个步骤,降低了因误差累积对最终识别结果的影响。 文本行检测,其又可分为水平行文字检测算法与倾斜文字行检测算法。

    3.1K10

    RPA之眼:AI-OCR,Fax-OCR概述

    文丨马磊 OCR是一种与RPA机器人协作的一项重要技术,相当于机器人的眼睛。 OCR是英文“Optical Character Recognition/Reader”的简称,光学字符识别。 这就为RPA技术与OCR技术的协同合作提供了契机。 而RPA + OCR的情况下,只需实现扫描好纸质文件,OCR会自动读取扫描文件,将图片信息读取并写入Excel等文档中,然后RPA机器人运行,进行业务处理。 近年来, OCR引起了广泛关注,但目前的OCR软件存在精度不高和无法应对非固定文件模板等课题。未来通过在OCR中引入AI的深度机器学习等技术以后,相信一定会解决这个课题。 Fax-OCR是什么? OCR的注意点 OCR技术确实可以自动实现数据的文本化,也是一项非常有效的效率改善的技术手段,但是现在的阶段OCR并非无所不能。 1、无法对应多份文件。

    48720

    Android Study 玩转百度ocr身份证识别不是梦~

    关于ocr的前世今生这里不做过多的说明,百度一抓一大把。 ? 前期准备 百度AI开放平台ocr地址: https://ai.baidu.com/sdk#ocr 说明文档地址: http://ai.baidu.com/docs#/OCR-Android-SDK/top OCR Android SDK提供了以下3种AccessToken管理方法. 1. API Key / Secret Key 此种身份验证方案使用AK/SK获得AccessToken。 /> <uses-permission android:name="android.permission.CAMERA"/> <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE 导入ocr-ui依赖 ? 3. 修改OCR-UI配置与主工程目录一致即可 ? 4. 添加依赖、导入jar、防止so 一气呵成 ? 5.

    82410

    Tesseract ocr文字识别

    https://blog.csdn.net/haluoluo211/article/details/77776697 前面很早做了图片的文字识别主要用到了开源框架Tesseract,当然做OCR new Tesseract(); // JNA Interface Mapping String fontPath = "E:/char_recongition/Tesseract-OCR / JNA Interface Mapping try { String fontPath = "E:/char_recongition/Tesseract-OCR

    2.1K20

    Tesseract-OCR helloworld

    Ubuntu installation sudo apt install tesseract-ocr pip install pytesseract # Jetson Nano # sudo vim ~ bashrc # export OPENBLAS_CORETYPE=ARMV8 Python test import cv2 import pytesseract import numpy as np def ocr_tesseract kernel, iterations=1) return pytesseract.image_to_string(img) if __name__ == '__main__': print(ocr_tesseract installation https://github.com/UB-Mannheim/tesseract/wiki Github official page https://github.com/tesseract-ocr /tesseract/ Google cloud https://cloud.google.com/vision/docs/ocr 中文识别 https://bbs.huaweicloud.com/blogs

    24820

    ocr文字识别0804

    今天我翻开ocr识别的demo发现,更新上线了智能卡证分类了。这意味着将为你的开发带来了极大的便利。 image.png 那我们来看一下这个接口给我们带来的能力是什么呢?

    51150

    扫码关注腾讯云开发者

    领取腾讯云代金券