展开

关键词

Android 图像处理(1)

图像构成 位图(bitmap) (r, g, b, a)—>(pixel)—>image 通过调整颜色处理图像 操作的对象是每个像素,我们可以改变图像的色相(Hue)、饱和度(Saturation)、明度 (Luminance) ColorActivity 通过颜色矩阵处理图形 ColorMatrixActivity 颜色矩阵(ColorMatrix) 颜色矩阵M是一个5*4的矩阵,如图1所示。 在Android中,颜色矩阵M是以一维数组m=[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t]的方式进行存储的。 ? 并且,通过如图3所示的运算可知,颜色矩阵M的第一行参数abcde决定了图像的红色成分,第二行参数fghij决定了图像的绿色成分,第三行参数klmno决定了图像的蓝色成分,第四行参数pqrst决定了图像的透明度 初始化颜色矩阵 1, 0, 0, 0, 0 0, 1, 0, 0, 0 0, 0, 1, 0, 0 0, 0, 0, 1, 0 通过像素r,g,b,a分量处理图像 PixelActivity

27920

Android处理图像数据全记录

Android处理图像是一件很常见的事情,这里记录备忘一些亲身使用过的处理图片数据的方法。 ; Bitmap转Drawable 1 Drawable d = new BitmapDrawable(getResources(),bitmap); 图片圆角展示 通过对图片数据bitmap进行处理即可 Mode.SRC_IN)); canvas.drawBitmap(bitmap, rect, rect, paint); return output; } 其他 第一行代码:Android Android编程权威指南 ? Android应用UI设计模式 ?

20310
  • 广告
    关闭

    《云安全最佳实践-创作者计划》火热征稿中

    发布文章赢千元好礼!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Android图像处理之泛洪填充算法

    泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是windows paint的油漆桶功能。算法的原理很简单,就是从一个点开始附近像...

    19920

    图像处理-图像增强

    图像增强前期知识 图像增强是图像模式识别中非常重要的图像处理过程。 图像增强的目的是通过对图像中的信息进行处理,使得有利于模式识别的信息得到增强,不利于模式识别的信息被抑制,扩大图像中不同物体特征之间的差别,为图像的信息提取及其识别奠定良好的基础。 一幅输入图像经过灰度变换后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。灰度变换不会改变图像内的空间关系。图像的几何变换是图像处理中的另一种基本变换。 相应地,对图像的低频部分进行增强可以对图像进行平滑处理,一般用于图像的噪声消除。 3、频域增强 图像的空域增强一般只是对数字图像进行局部增强,而图像的频域增强可以对图像进行全局增强。 图像增强的方法分类: |图像增强方法|实现方法| |-|-| |处理对象|灰度图| ||(伪)彩色图| |-|-| |处理策略|全局处理| ||局部处理(ROI ROI,Region of Interest

    15510

    图像处理-图像滤波

    和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ 高斯分布:h(x,y)=e^-(\frac{x^2+y^2}{2a^2}) 双边滤波 一种非线性的滤波方法,是结合图像的空间邻近度和像素相似度的的一种折中处理 中心像素的距离和灰度差值的增大,邻域像素的权系数逐渐减小 优点:保持边缘性能良好,对低频信息滤波良好 缺点:不能处理高频信息 假设高斯函数表达式如下: W_ij=\frac{1}{K_i}e^-\frac 其中: f:待滤波图像 w:滤波模板 option1, option2:可选项 可选项分为: (1) 边界项:遍历处理边界元素时,需要提前在图像边界周围补充元素 参数:`X`--表示具体的数字,默认用 `0`补充 `symmetric`--镜像边界元素 `replicate`--重复边界像素 `circular`--周期性填充边界内容 (2) 尺寸项:处理图像前扩充了边界,比原图大一圈,此项输出图像大小 ,首先把图像通过傅里叶变换将图像从空间域转换到频率域,频域处理,反傅里叶变换转到空间域 |||| |-|-|-| |||| C++代码 均值滤波 void meanFilter (unsigned char

    11820

    图像处理-图像噪声

    图像噪声 噪声 加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。 高斯白噪声包括热噪声和散粒噪声。 椒盐噪声 定义:椒盐噪声又称为双极脉冲噪声,这种噪声表现的特点是噪声像素的灰度值与邻域像素有着明显差异,而其余像素的灰度值保持不变,因此在图像中造成过亮或过暗的像素点。 椒盐噪声严重影响图像的视觉质量,给图像的边缘检测、纹理或者特征点提取等造成困难。 Based algorithm for removal of high density impulse noises) 一般会选择先检测再滤波的思路,通过开关机制抑制噪声,上述方法对低噪声水平的椒盐噪声处理效果良好 因为基于中值的滤波方法仅考虑图像局部区域像素点的顺序阶信息,没有充分利用像素点之间的相关性或相似性。噪声像素点的估计值可能与真实值有较大偏差,很难保持图像的细节信息。

    7110

    图像处理-图像融合

    一般情况下,我们先会对不同传感器取得的各自信息及信号进行一个整合加强过程,例如图像间的配准,图像边缘增强,图像纹理平滑,抑制背景杂波等;然后我们要做的是对于融合层和融合算法的选取,不同的算法处理方式和提取特征信息的方法不同 2、对于同一目标的多源图像信号的采集。通过传感器进行目标信号采集,采集过程虽然简单,却可也不能轻视,好的采集方法可以获得更优质的信号信息,为后续的信号处理过程打下基础。 3、对于采集信号的预处理。 收集到的信号不一定直接就能用,在进行图像融合之前,对采集到的信号进行去噪、增强、配准等预处理,可以大大提高图像的对比度以及分辨率,有助于图像融合效果的进一步提高。 4、图像融合过程。 图像融合处理过程的流程框图如下: 不同的层次所进行数据处理的要求和融合算法是不一样的,需要具体问题具体分析,通常我们将图像数据分为三层,融合过程流程图如下: 图像融合层简介: 1、基于像素级的图像融合属于最基本的图像融合技术 这一层主要是直接处理图像的单像素,因为像素级是由源场景的图像最大化描述的。像素级图像融合需要对图像进行预处理,包括图像配准、滤波和增强。

    13220

    Android图像处理 - 高斯模糊的原理及实现

    前言 高斯模糊是图像处理中几乎每个程序员都或多或少听过的名词,但是对其原理大家可能并不了解,只知道通过高斯模糊能实现图像毛玻璃效果。 本文首先介绍图像处理中最基本的概念:卷积;随后介绍高斯模糊的核心内容:高斯滤波器;接着,我们从头实现了一个Java版本的高斯模糊算法,以及实现RenderScript版本。 卷积(Convolution)是图像处理中最基本的操作,就是一个二维矩阵A(M*N)和一个二维矩阵B(m*n)做若干操作,生成一个新的二维矩阵C(M*N),其中m和n远小于M和N,B称为卷积核(kernel RenderScript版本 RenderScript是Android提出的一个计算密集型任务的高性能框架,能并行的处理任务,他可以充分利用多核CPU和GPU,你不需要管怎么调度你的任务,只需要管任务具体做什么 开源项目 关于Android图像模糊的开源项目有很多,比如Blurry是专门针对Bitmap或View做模糊,可以设置模糊的基底色,而且还能对模糊操作异步化;BlurKit-Android也能对Bitmap

    2.8K111

    图像处理

    图像处理 图像处理一般指数字图像处理,大多数依赖于软件实现。 其目的是去除干扰、噪声,将原始图像编程为适合计算机进行特征提取的形式。 图像处理主要包括图像采集、图像增强、图像复原、图像编码与压缩和图像分割。 图像采集 数字图像数据提取的方式 图像增强 为了使图像的主体结构更加明确,必须对图像进行改善。 例如静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像处理为适用于网络传输的数码相片、彩色照片等方面。 采集图像受到各种条件影响,模糊,噪声干扰,图像分割会遇到困难。 图像识别 图像识别是将处理得到的图像进行特征提取和分类。 特别适合处理需要同时考虑许多因素和条件的问题,以及信息模糊或不精确等不确定性问题。 应用过程中存在收敛速度慢、训练量大、训练时间长,局部最优,识别分类精度不够,难以适用于经常出现新模式的场合。

    7140

    Android图像处理系列:OpenGL深度测试的应用

    下面以Android上的OpenGL ES 2.0为例,来看看相关的方法调用,其它平台的也类似。 作者简介:kenney, 天天P图 Android 工程师 ---- 文章后记: 天天P图是由腾讯公司开发的业内领先的图像处理,相机美拍的APP。 加入我们: 天天P图技术团队长期招聘: (1) AND / iOS 开发工程师 (2) 图像处理算法工程师  期待对我们感兴趣或者有推荐的技术牛人加入我们(base 上海)!

    1K21

    Android图像处理-像素化的原理及实现

    作者:夏正冬 原文地址:Android图像处理-像素化的原理及实现 博客地址:xiazdong.github.io 马赛克算法首先需要确定马赛克单元的大小,即小方块的大小。 当然你也可以对图像的某块区域打马赛克,如最右边的图,他只对头部打马赛克。 算法实现如下: public class PixelateUtil { / 普通图像->像素图,zoneWidth为像素图的大像素的宽度 / public static zoneWidth, left, top, right, bottom); //对指定区域打马赛克 开源项目 Pixelate是实现基本马赛克效果的开源项目,它能够异步对整个或者部分的Bitmap区域打马赛克,处理完后会在 int density) { //bitmap为马赛克图 Log.v(TAG, ""); } }) .make(); android-close-pixelate

    1.3K10

    matlab 医学图像处理(matlab进行图像处理)

    图像文件增加椒盐噪声,然后进行中值滤波 Y=imread(‘D:\321.jpg’);%读入图像 I=rgb2gray(Y);%转换成灰度图 J =imnoise(I,‘salt & pepper’, 0.02);%给图像添加椒盐噪声 K =medfilt2(J);%对增加噪声后的图像进行中值滤波 subplot(2,2,1); imshow(I); title(‘原图’);%显示图像,并命名‘原图’ subplot(2,2,2); imshow(J); title(‘加噪声后’);%显示图像,并命名‘加噪声后’ subplot(2,2,3); imshow(K); title(‘加噪中值滤波后’) ;%显示图像,并命名‘加噪中值滤波后’ 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/126043.html原文链接:https://javaforall.cn

    10520

    图像处理-图像去雾

    图像处理-图像去雾 雾图模型 I(x)=J(x)t(x)+A(1-t(x)) I(x) ——待去雾的图像 J(x)——无雾图像 A——全球大气光成分 t——折射率(大气传递系数) 暗通道先验 在无雾图像中 总之,自然景物中到处都是阴影或者彩色,这些景物的图像的暗原色总是很灰暗的。 首先求出每个像素RGB分量中的最小值,存入一副和原始图像大小相同的灰度图中,然后再对这幅灰度图进行最小值滤波(邻域中取最小值) 验证了暗通道先验理论的普遍性 计算折射率 t(x)=1-wmin(minI (y)/A) 估计大气光 1.选取暗通道图像暗通道最亮的0.1%的像素(一般来说,这些像素表示雾浓度最大的地方) 2.取输入图像里面这些像素对应的像素里面最亮的作为大气光 (暗图像最亮的0.1%的像素对应的原图最亮的为大气光 去雾 J(x)=I(x)-A/max(t(x),t0) +A t0=0.1 流程: 1.求图像暗通道 2.利用暗通道计算出折射率 3.利用暗通道估计大气光 4.代回雾图公式去雾 我的代码-图像去雾算法Matlab

    14120

    图像处理-Retinex图像增强

    图像处理_Retinex图像增强 单尺度SSR (Single Scale Retinex) 图像S(x,y)分解为两个不同的图像:反射图像R(x,y),入射图像L(x,y) 图像可以看做是入射图像和反射图像构成 而L(x, y)表示入射光图像,决定了图像像素能达到的动态范围,我们应该尽量去除。 我们把照射图像假设估计为空间平滑图像,原始图像为S(x, y),反射图像为R(x, y),亮度图像为L(x, y),使用公式 r(x,y)=logR(x,y)=log\frac{S(x,y)}{L(x, 、全局动态范围压缩,也可以用于X光图像增强。 处理后的图像局部对比度提高,亮度与真实场景相似,在人们视觉感知下,图像显得更加逼真。 参考文章

    22310

    图像处理-图像插值

    这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真 2,双线性二次插值 3、三次内插法 内插值,外插值 两张图像混合时通过内插与外插值方法可以实现图像亮度、对比度、饱和度、填色、锐化等常见的图像处理操作。 外插值方法:可以用来生成跟内插值效果相反的图像。 比如内插值模糊图像,通过外插值可以去模糊,外插值可以调节饱和度,可以实现图像一些列的处理比如亮度、饱和度、对比度、锐化调整。 自适应的方法可以根据插值的内容来改变(尖锐的边缘或者是平滑的纹理),非自适应的方法对所有的像素点都进行同样的处理。 双三次产生的图像比前两次的尖锐,有理想的处理时间和输出质量。因此,在很多图像编辑程序中是标准算法 (包括 Adobe Photoshop), 打印机和相机插值。

    11410

    Android图像处理系列 - 高斯模糊的几种优化方法

    一,高斯模糊简介 高斯模糊是图像处理中常用的一种操作,用于减少图像细节,平滑图像。简单来说,高斯模糊的处理过程,是让图像每个像素都取周边像素的平均值,是参照正态分布的加权平均值。 函数图像如图2。 ? 图2 一维标准正态分布 不同的 ? ,对应不同的函数图像,如图3。另外正态分布函数中 ? 。高斯模糊实现时,如何选择 ? 右:(0,1,2,2,3)的Kawase blur 下图是两种模糊算法处理实际图片的结果比较。依次是原图,高斯模糊处理结果,Kawase blur处理结果。 ? 缩小图片往往有丢失图像细节的问题,而高斯模糊的作用在于平滑地降低图像细节。所以可以利用缩小图片的方法,减少计算量同时几乎不影响最终效果。 /archives/GDC2003_DSTEAL.ppt 6)https://www.google.com/patents/US7397964 ---- 作者简介:camusli(李小奇),天天P图Android

    3.4K110

    python图像处理-滤镜处理

    前言 很多时候用手机拍完照,为了让照片看上去更好看,我们都会对照片做一些处理,而这里用的最多的方法就是滤镜了,常用的滤镜一般有模糊滤镜,其它的就是一些风格的变换了,比如黑白老照片,怀旧复古风,素描铅笔艺术风等 今天我们就尝试用python的PIL库对图片做一些滤镜处理,希望可以带给你一些想法。 打开原始图片 这里我用的是一张猫的图片,先打开原图查看。 ? 进行模糊滤镜处理 PIL中的ImageFilter模块中已经有很多集成好的滤镜方法,这里我们直接调用,原理下一篇会详细讲解并自己尝试者去实现同样的效果。 ? 循环对比展示所有滤镜处理 这里将ImageFilter中几个滤镜属性直接调用了,有些看上去效果并不明显,比如模糊滤镜效果就不是很明显,还有不同图片的效果也是不一样的,比如猫的边界滤镜并没有找到明显滤镜,

    51020

    图像处理基础

    现如今我们每时每刻都在与图像打交道,而图像处理也是我们绕不开的问题,本文将会简述图像处理的基础知识以及对常见的裁剪、画布、水印、平移、旋转、缩放等处理的实现。 01 — 图像处理基础 在进行图像处理之前,我们必须要先回答这样一个问题:什么是图像? 答案是像素点的集合。 ? 例如上述 4 x 4 RGB 图像可转换为: ? 图像处理的本质实际上就是在处理像素矩阵即像素多维数组运算。 02 — 基本处理实现 对于图像的基本处理,本文示例使用的是 opencv-python 和 numpy 库。 示例: ? 裁剪:切割矩阵即可。 本文介绍了图像处理的基础,以及通过 OpenCV 实现了几种常见的图像处理功能。

    21620

    图像简单处理

    (Bitmap img) { this.bitmap = img; } ///

    /// 构造图像识别 this.bitmap = destBitmap; return this; } /// /// 二值化处理 } } return this; } /// /// 柔化处理 this.bitmap = newbmp; return this; } /// /// 图像锐化处理 ImageDistinguish ClearNoise() { int x, y; byte[] p = new byte[9]; //最小处理窗口

    17640

    医学图像处理

    目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。 用深度学习方法进行数据分析呈现快速增长趋势,称为2013年的10项突破性技术之一。 与单核的CPU处理相比,今天使用的图形处理单元(GPU)计算机芯片实现了大幅加速(大约40倍)。在医学图像处理中,GPU首先被引入用于分割和重建,然后用于机器学习。 2、图像分割 医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象。 4、图像融合 图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性,对多幅图像间的互补信息的处理来提高图像的清晰度。 在计算机辅助图像处理的基础上,开发出综合利用图像处理方法, 结合人体常数和部分疾病的影像特征来帮助或模拟医生分析、诊断的图像分析系统成为一种必然趋势。

    2K42

    相关产品

    • 图像分析

      图像分析

      腾讯云图像分析基于深度学习等人工智能技术,提供综合性图像理解、图像处理、图像质量评估等服务,包含图像标签、logo识别、动漫人物识别、植物识别等,可以用于智能相册、视频理解、AI营销等场景…..

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券