首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Neural Networks论文笔记(1)

如今一些深度神经网络对于一些对抗性样本(Adversarial sample)是弱势的, 对抗性样本就是指我们对输入进行特定的改变, 通过原有的学习算法最终导致整个网络内部出现误差, 这属于攻击的一种, 然而, 现在的攻击都是要么计算代价特别大, 要么需要对目标的模型和数据集有大量的先验知识, 因此, 这些方法在实际上其实都不实用. 该文章主要介绍了一种程序性噪声, 利用该噪声, 使得构造实用的低计算量的黑盒攻击成为了可能, 对抗鲁棒性的神经网络结构, 比如Inception v3和Inception ResNet v2 在ImageNet数据集上. 该文章所提出来的攻击实现了低尝试次数下成功造成错分类. 这种攻击形式揭露了神经网络对于Perlin噪声的脆弱性, Perlin噪声是一种程序性噪声(Procedural Noise), 一般用于生成真实的纹理, 使用Perlin噪声可以实现对所有的分类器都实现top1 至少90%的错误率, 更加令人担忧的是, 该文显示出大多数的Perlin噪声是具有"普适性"(Universal)的, 在对抗样本中, 数据集的大部分, 使用简单的扰动使得高达70%的图片被错误分类

03

【干货书】Python强化学习算法:学习、理解和开发智能算法以应对人工智能挑战

来源:专知本文为书籍介绍,建议阅读5分钟读完本书后,你将使用关键的强化学习算法来克服现实应用中的挑战,并成为强化学习研究社区的一员。 强化学习(RL)是人工智能的一个流行和有前途的分支,它涉及建立更智能的模型和智能体,这些模型和智能体可以根据不断变化的需求自动确定理想的行为。本书将帮助你掌握RL算法,并在构建自学习智能体时理解它们的实现。 从介绍强化学习环境中工作所需的工具、库和设置开始,本书涵盖了强化学习的构建模块,并深入研究了基于值的方法,如Q-learning和SARSA算法的应用。您将学习如何使用

03

深度学习调参有哪些技巧?

最近因为一些需要,参与了一些CNN建模调参的工作,出于个人习性,我并不习惯于通过单纯的trial-and-error的方式来调试经常给人以”black-box”印象的Deep Learning模型,所以在工作推进过程中,花了一些时间去关注了深度学习模型调试以及可视化的资料(可视化与模型调试存在着极强的联系,所以在后面我并没有对这两者加以区分),这篇文章也算是这些工作的一个阶段性总结。 这里总结的内容,对于模型高手来说,应该说都是基本的know-how了。 我本人是计算机体系结构专业出身,中途转行做算法策略,所以实际上我倒是在大规模机器学习系统的开发建设以及训练加速方面有更大的兴趣和关注。不过机器学习系统这个领域跟常规系统基础设施(比如Redis/LevelDB以及一些分布式计算的基础设施等)还有所区别,虽然也可以说是一种基础设施,但是它跟跑在这个基础设施上的业务问题有着更强且直接的联系,所以我也会花费一定的精力来关注数据、业务建模的技术进展和实际问题场景。 说得通俗一些,对自己服务的业务理解得更清晰,才可能设计开发出更好的算法基础设施。 另外在进入文章主体之前想声明的是,这篇文章对于Deep Learning的入门者参考价值会更高,对于Deep Learning老手,只期望能聊作帮助大家技术总结的一个余闲读物而已。 文章的主要内容源于Stanford CS231n Convolutional Neural Networks for Visual Recognition课程[1]里介绍的一些通过可视化手段,调试理解CNN网络的技巧,在[1]的基础上我作了一些沿展阅读,算是把[1]的内容进一步丰富系统化了一下。限于时间精力,我也没有能够把里面提到的所有调试技巧全部进行尝试,不过在整理这篇文章的时候,我还是参考了不止一处文献,也结合之前以及最近跟一些朋友的技术交流沟通,对这些方法的有效性我还是有着很强的confidence。 1.Visualize Layer Activations 通过将神经网络隐藏层的激活神经元以矩阵的形式可视化出来,能够让我们看到一些有趣的insights。 在[8]的头部,嵌入了一个web-based的CNN网络的demo,可以看到每个layer activation的可视化效果。

05

AI 技术讲座精选:OpenAI 最新成果——利用对抗样本攻击机器学习

对抗样本是指攻击者故意设计以导致机器学习模型出错的输入样本;他们对机器来说就像是视觉幻觉一样。在本篇博文中,我们将向您展示对抗样本在不同介质中的运作原理,也将讨论为何系统难以防御它们。 在 OpenAI,我们认为对抗样本是研究安全性的一个好方面因为它代表着人工智能安全性上一个能在短期内得以解决的具体问题,由于解决对抗样本是如此之难,需要严肃认真的研究工作。(尽管为了达到我们建立安全、广泛分布的人工智能的目标,我们还需要研究机器学习安全性的许多方面。) 为了弄清楚对抗样本的真实面目,请思索一下《解释并驾驭对

010

大语言模型综述全新出炉:51页论文带你盘点LLM领域专业化技术

大语言模型(LLMs)在自然语言处理(NLP)领域取得了显著的进步,为广泛的应用提供了一种非常有用的、与任务无关的基础。然而,直接应用 LLMs 去解决特定领域的复杂问题会遇到许多障碍,这些障碍源于领域数据的异质性、领域知识的复杂性、领域目标的独特性以及约束的多样性(例如不同的社会规范、伦理标准、宗教信仰等)。领域专业化是让 LLMs 在许多应用中实际投入使用的关键甚至是前提。因此,随着 LLMs 开始应用在越来越多的领域中的,领域专业化的技术在近期获得了加速发展和关注,而一份全面且系统的回顾能更好地总结和引导这一领域的持续工作。

04
领券