首页
学习
活动
专区
工具
TVP
发布

图像轮廓

import cv2 import numpy as np o=cv2.imread('C:/Users/xpp/Desktop/Lena.png')#原始图像 cv2.imshow("original...外部的轮廓为父轮廓,内部的轮廓为子轮廓,按照上述关系分类,一幅图像中所有轮廓之间就建立了父子关系。...) image表示输入图像 mode表示图像轮廓的检索模式 method表示图像轮廓的近似方法 image=cv2.drawContours(image, contours, contourIdx,...表示绘制轮廓边缘 color表示绘制颜色 thickness表示画笔粗细,可选参数 lineType表示绘制线型,可选参数 hierarchy表示图像轮廓的层次信息 maxLevel表示图像轮廓的层次深度...3) 注意:轮廓就像从黑色背景中找到白色物体,通常情况下,预先对图像进行阈值分割或边缘检测得到二值图像

28610

OpenCV图像处理(十五)---图像轮廓特征

前言 在上一期的文章中,我们学习了图像的边缘检测知识,了解到边缘检测实际就是检测图像中亮度变化有区别或者较大的地方,实际效果表现为图像中的轮廓检测。...今天,我们继续来学习图像的新知识--轮廓特征。 一、检测并绘制轮廓的方法 轮廓检测是图像处理中常用的方法。...1.1 原始图像 (各式各样的形状) 1.2 代码实践 1)首先我们来寻找轮廓,然后将轮廓进行描红 # 首先我们来寻找轮廓,然后将轮廓进行描红 import cv2...cv2.imshow("img", img) cv2.waitKey(0) 代码分析:需要注意的是cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的...1.3 效果展示 1)首先我们来寻找轮廓,然后将轮廓进行描红 (可以看到,轮廓已经被描红) 2)将找到的轮廓用外接圆进行框选出来 (轮廓已经被外接圆框选,有些地方不太合理哦,后期可以用面积法排除。)

29210
您找到你想要的搜索结果了吗?
是的
没有找到

opencv 图像轮廓的实现示例

图像轮廓 Contours:轮廓 轮廓是将没有连着一起的边缘连着一起。 边缘检测检测出边缘,边缘有些未连接在一起。 ? 注意问题 1.对象为二值图像,首先进行阈值分割或者边缘检测。...2.查找轮廓需要更改原始图像,通常使用原始图像的一份进行拷贝。 3.在opencv里,是从黑色背景里找白色。因此对象必须是白色,背景为黑色。...父轮廓…) image:原始图像 mode:轮廓检索方式 method:轮廓的近似方法 ?...图像掩模和像素点 有时我们需要构成对象的所有像素点,我们可以将图像的所有轮廓提取出来,然后使用函数cv.drawContours()将轮廓内的区域填充为指定的颜色。...到此这篇关于opencv 图像轮廓的实现示例的文章就介绍到这了,更多相关opencv 图像轮廓内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

1.2K31

python图像轮廓识别_python数字图像处理

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别...、图像分类应用。...希望文章对您有所帮助,如果有不足之处,还请海涵~ 前面一篇文章介绍了图像分类知识,包括常见的图像分类算法,并介绍Python环境下的贝叶斯图像分类算法、基于KNN算法的图像分类和基于神经网络算法的图像分类等案例...这篇文章将详细讲解图像分割知识,包括阈值分割、边缘分割、纹理分割、分水岭算法、K-Means分割、漫水填充分割、区域定位等。万字长文整理,希望对您有所帮助。...二.基于阈值的图像分割 三.基于边缘检测的图像分割 四.基于纹理背景的图像分割 五.基于K-Means聚类的区域分割 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

78720

二值图像分析之轮廓分析

图像的二值化 在先前的文章二值图像分析:案例实战(文本分离+硬币计数)中已经介绍过,什么是图像的二值化以及二值化的作用。 这次,我们借助cv4j来实现简单的基于内容的图像分析。...轮廓分析(Contour Analysis) 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线。检测轮廓的工作对形状分析和物体检测与识别都非常有用。...= mask[i]; if (c>=0) { colors.put(c, Color.argb(255, random.nextInt(255),...轮廓分析一.jpeg 第三步,进行轮廓分析。...矩是描述图像特征的算子,主要应用于图像检索和识别 、图像匹配 、图像重建 、数字压缩 、数字水印及运动图像序列分析等。 一阶矩和零阶矩用来计算某个形状的重心。 ?

1.6K30

python 基于opencv 绘制图像轮廓

这篇文章主要介绍了python 基于opencv 绘制图像轮廓的示例,帮助大家更好的利用python的opencv库处理图像,感兴趣的朋友可以了解下 图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形...其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手;而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓。 ?...寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图。...一般情况下,我们会首先获得要操作的轮廓,再进行轮廓绘制及分析: cnt = contours[1] cv.drawContours(img, [cnt], 0, (0, 0, 255), 2) 实验:找出并绘制图像轮廓...以上就是python 基于opencv 绘制图像轮廓的详细内容

1.8K11

OpenCV 轮廓 —— 轮廓分析

当分析一张图像的时候,针对轮廓,我们也许有很多事情要做。毕竟,所有轮廓都是或即将是我们想要进行识别或操作的。另外相关的还有多种对轮廓的处理,如描述轮廓,简化或拟合轮廓,匹配轮廓到模板,等等。...Douglas-Peucker(DP) 逼近算法 该算法首先从轮廓(图B)中挑出两个最远的点,将两点相连(图C)。然后在原来的轮廓上寻找一个离线段距离最远的点, 将该点加入逼近后的新轮廓中。...DP算法的示意图:(A)为原始图像;(B)为提取的轮廓;©表示从最远的两个点开始;(D~F)表示其他点的选择过程 cv2.approxPolyDP 以指定精度逼近多边形曲线。...该句型为正方向的矩形(不能旋转) 计算点集或灰度图像的非零像素的右上边界矩形。...函数使用 cv.fitLine( points, # 点集列表,可以是2D也可以3D distType, # 使用的距离 param, # 对于某些类型的距离,数值参数(c)

2.7K20

OpenCV 轮廓 —— 轮廓匹配

矩 相关介绍 比较两条轮廓最简洁的方法之一是比较它们的轮廓矩。轮廓矩代表了一条轮廓、一幅图像、一组点集的某些高级特征。下面的所有讨论对轮廓图像、点集都同样适用,简便起见,将它们统称为对象。...因此若图像为二值图(例如,所有像素都等于0或者1),则 m_{00} 代表图像上所有值非零的区域。当处理轮廓时,结果是轮廓的长度。...函数使用 cv2.moments( array[, # 单通道2D图像 binaryImage] # 如果为真,所有非零的图像像素将被视为1。该参数仅用于图像。...官方文档 函数使用 cv2.matchShapes( contour1, # 第一个轮廓或灰度图像。 contour2, # 第二轮廓或灰度图像。...OpenCV 努力提供比矩匹配更好的形状匹配算法 https://docs.opencv.org/4.5.5/d1/d85/group__shape.html#ga1d058c5d00f6292da61422af2f3f4adc

2K30

C++ OpenCV轮廓周围矩形和圆形绘制

前面我们学习了轮廓提取,正常我们在提到到轮廓截取出来时一般需要是矩形的图像,这次我们就来学习一下轮廓周围绘制矩形等。...相关API approxPolyDP,对图像轮廓点进行多边形拟合 approxPolyDP(inputArray curve,OutputArray approxCurve,double epsilon...,bool closed) InputArray curve:一般是由图像轮廓点组成的点集 OutputArray approxCurve:表示输出的多边形点集 double epsilon:主要表示输出的精度...,就是另个轮廓点之间最大距离数,5,6,7,,8,,,,, bool closed:表示输出的多边形是否封闭 ---- 矩形 boundingRect,得到轮廓周围最小矩形 Rect boundingRect...操作步骤 将源图像变为二值图像 发现轮廓,找到图像轮廓 通过API找到轮廓点上的最小包含矩形,圆,椭圆 绘制图像 ? ? ? 多边形拟合 ? 可旋转的最小矩形 ? 最小矩形 ? 最小包围圆形 ?

2.3K20

OpenCV 内轮廓与外轮廓说明

: CV_RETR_EXTERNAL只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略 CV_RETR_LIST 检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系,彼此之间独立,没有等级关系...,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓,所以hierarchy向量内所有元素的第3、第4个分量都会被置为-1 CV_RETR_CCOMP 检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层...,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层 CV_RETR_TREE, 检测所有轮廓,所有轮廓建立一个等级树结构。...外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。...用CV_RETR_TREE效果 此时找到的所有轮廓

61020
领券