x2+y2−1)3=x2y3的图像 代码: /* 说明: 本程序的原理是根据方程(x^2+y^2-1)^3=x^2*y^3 作差得值f,若f曲线
ROC曲线(受试者工作特征, Receiver Operating Characteristic) 可以简单、直观得观察分析方法的临床准确性,并可用肉眼作出判断。...ROC以真阳性率(灵敏度FPR)为纵坐标,假阳性率(1-特异度TPR)为横坐标绘制的曲线,可准确反映某分析方法特异性和敏感性的关系,是试验准确性的综合代表。...ROC曲线不固定分类界值,允许中间状态存在,利于使用者结合专业知识,权衡漏诊与误诊的影响,选择一更佳截断点作为诊断参考值。...提供不同试验之间在共同标尺下的直观的比较,ROC曲线越凸越近左上角表明其诊断价值越大,利于不同指标间的比较。曲线下面积可评价诊断准确性。...ROC曲线下的面积(area under ROC curve)值在1.0和0.5之间。 在AUC>0.5的情况下,AUC越接近于1,说明诊断效果越好。
p=6236 ROC 曲线可能是评估评分分类器的预测性能的最常用的度量。...ROC曲线 ? ?...plot.scores.AUC <- function (y, y.hat, measure = "tpr" , x.measure = "fpr" ) { par(mfrow=c( 1 ,...AUC-PR曲线 精确回忆曲线绘制阳性预测值(PPV,y轴)与真阳性率(TPR,x轴)。...AUC-PR是一个好的分类器 将两个类分开但不完美的分类器将具有以下精确回忆曲线: ? 可视化分类器在没有任何错误的正面预测的情况下达到约50%的召回率。
library(dlstats)shortList c("pROC","precrec","ROCit", "PRROC","ROCR","plotROC")downloads <- cran_stats...2005年 以下代码ROCR使用包随附的综合数据集设置并绘制默认的ROC曲线。在整个文章中,我将使用相同的数据集。...,并对曲线进行着色。...2010 pROC在图中绘制曲线下面积(AUC)的置信区间非常容易。 ? 2014年 roc.curve()函数会绘制出干净整齐的ROC曲线 。 ?...2019 ROCit是一个用于绘制ROC曲线和其他二进制分类可视化效果的新程序包 ,并且正在迅速普及。 ? 下图显示了CDF累积密度。KS统计数据显示两条曲线之间的最大距离。
由于ggplot2中的geom_line()函数只能绘制折线图,需要用到ggalt提供的geom_xspline()函数绘制光滑的曲线图 geom_line 将所有点连接起来,是折线图但不平滑 geom_smooth.../stat_smooth一条平滑的线,但他是拟合曲线,不会遍历所有数据点 实现遍历所有点的光滑曲线需要用到插值原理 一个更好的选择是使用插值splines.这也是一个使用多项式的插值,但不是只使用一个(...如你所尝试的),它使用很多.它们被强制执行以使曲线连续的方式遍历所有数据点....element_text(size=10,face="plain",color="black") ) image.png 通过R自带的spline函数获得一系列插值点后用geom_line()绘制的曲线明显光滑了...axis.text = element_text(size=10,face="plain",color="black") ) image.png也可以直接用geom_xspline()函数 绘制填充面积的曲线图
p=10963 在本文中,我描述了如何在CRAN中搜索用于绘制ROC曲线的包,并重点介绍了六个有用的包。...library(dlstats)shortList c("pROC","precrec","ROCit", "PRROC","ROCR","plotROC")downloads 曲线下面积的置信区间非常容易。 2014年 该roc.curve()函数 会绘制出干净整齐的ROC曲线 。...2015年 precrec 是另一个用于绘制ROC和精确调用曲线的库。...KS统计数据显示两条曲线之间的最大距离。 ksplot(ROCit_obj)
1、roc曲线的意义 ROC曲线就是用来判断诊断的正确性,最理想的就是曲线下的面积为1,比较理想的状态就是曲线下的面积在0.8-0.9之间,0.5的话对实验结果没有什么影响。...2、代码部分 install.packages("pROC") install.packages("ggplot2") library(pROC) library(ggplot2) #建立曲线...plot(rocobj1) #其他参数美化 plot(rocobj1,print.auc=TRUE,auc.polygon=TRUE,grid=c(0.1,0.2),grid.col=c("green...print.thres=TRUE) #计算partial AUC选择关注一定范围数据 plot(rocobj1,print.auc=TRUE,auc.polygon=TRUE,partial.auc=c(...0.8,0.4),partial.auc.focus="sp",grid=c(0.1,0.2),grid.col=c("green","red"),max.auc.polygon=TRUE,auc.polygon.col
大家对ROC曲线都很熟悉,从方法的特异性和灵敏度出发反应一个方法的准确度。但是,在临床的应用中,往往仅通过以上标准得到的准确度是不可靠的。...故早在2006年纪念斯隆-凯特琳癌症中心AndrewVickers博士等人研究出另外一个新的评估方法,叫决策曲线分析法(Decision Curve Analysis,DCA)。...今天我们就来介绍下在R语言中如何实现决策曲线分析方法。 首先我们 还是找到一个DCA的包DecisionCurve。...2. summary.decision_curve 等同于summary列出评估模型的所有内容 3. plot_decision_curve 绘制以上生成的决策曲线 4. plot_clinical_impact...然后就是决策曲线的绘制: plot_decision_curve( list(baseline.model, full.model), curve.names = c("Baseline model",
前面给大家介绍 ☞【R绘图】散点图+直方图(密度图) 今天小编给大家介绍第二种方法,绘制散点图,并且在散点图上添加直方图和密度曲线。我们还是使用☞【R绘图】散点图+直方图(密度图)里面使用的数据。...添加密度曲线 #在散点图上添加密度曲线 ggExtra::ggMarginal(p, type = "density", #指定添加类型 xparams=list...=list(fill = "green"), #指定颜色 yparams = list(fill="orange"), #指定颜色 ) 3.添加直方图+密度曲线...#在散点图上添加密度曲线+在散点图上添加histogram ggExtra::ggMarginal(p, type = "densigram", xparams...根据性别分组添加密度曲线 #根据性别分组添加密度曲线 ggExtra::ggMarginal(p, type = "density", xparams=list
提到差异火山图,相信很多同学肯定不陌生。因为形似火山(喷发),所以称为火山图。差异火山图最常见于转录组数据的分析中,在基因表达层面,用于展示两组间表达量上调和下...
之前因工作需要绘制ROC曲线,所以对该曲线的计算细节进行了一番摸索。...刚开始我搜索ROC曲线一般跟机器学习相关联,导致我对它的概念有了曲解,理所当然地以为它只是一个用于机器学习的分类器评估标准,所以在绘制曲线前应当使用逻辑回归等模型对数据建模分析。...如上就是ROC曲线的动机。 在R里面,有ROCR与专门的机器学习包mlr(现在是mlr3了)可以进行建模和绘制ROC曲线,以及相关参量的计算。...实际上,不需要使用任何模型,也可以绘制ROC曲线,因为ROC曲线的绘制就是选择阈值与计算当前阈值下假阳性率与真阳性率变化的过程。...我们接下来使用R语言手撕AUC计算。 这里的核心是计算假阳性、真阳性率,所以首先要计算下方混淆矩阵中的各个参数。 ?
p=6087 根据生存曲线的估计,可以推断出相比组之间存活时间的差异,因此生存曲线非常有用,几乎可以在每个生存分析中看到。...例 在我们将对象放入ggsurvplot()函数之后,我们可以创建简单的生存曲线估计。让我们来看看患有卵巢癌(卵巢浆液性囊腺癌)和患有乳腺癌(乳腺浸润癌)的患者之间存活时间的差异 。...conf.int = TRUE, # 曲线的置信区间....xlim = c(0,2000), # 横轴范围 break.time.by = 500, # 时间刻度....每个参数都在相应的注释中描述,但我想强调xlim控制X轴限制但不影响生存曲线的参数,这些参数考虑了所有可能的时间。 比较 基础包 ? 看起来很漂亮..... ?
C语言的开发场景: 应用软件 主要包含各种软件如:QQ,百度网盘,游戏 (上层) 操作系统 windows/macOS/Linux (下 电脑硬件 ...层) C语言是一个擅长底层开发的语言。...而C语言的主要编译器有:Clang/GCC/MSVS。
一.C语言是什么?...语言大致可以分为自然语言和计算机语言,自然语言就是人与人日常交流的语言,如汉语、英语、日语等等,计算机语言又可以分为机器语言、汇编语言、高级语言,C语言就是一个高级语言 机器语言:就是由二进制01组合起来的计算机可以直接识别的程序语言是一种面向机器的语言...,比起低级语言易懂易学,可移植性好,编程效率高,但是执行效率没有低级语言高,需要经过编译或解释,C语言就是采用编译的一种高级语言 二.为什么选择C语言 C语言常年霸榜各类高级语言前三,属于基础必学的语言...,其功能强大,而且许多语言都很相似,如果学好C语言,对学习其他语言也有很大帮助 三.编译器的选择 C语言是一门编译型的语言,需要依赖编译器将计算机语言转换成机器能够执行的机器指令 常见的编译器有:msvc...+文件,这里没有C文件选项,因为C++和C基本不分家,将后缀名.cpp改为.c就可以了,创建好后就可以开始写我们的第一个C语言程序了 注意:其中.c的文件叫源文件,.h的文件叫头文件(head),后面会慢慢讲到
程序员 Dobiasd 绘制七种编程语言的学习曲线图。 这些语言是:JavaScript、Java、C++、Python、Lisp、Haskell、PHP JavaScript ? Java ?...C++ ? Python ? Lisp ? Haskell ? PHP ? 原文:https://www.programmersought.com/article/35734771634/
hist(mtcars$mpg, freq=F, breaks=3) ##在R语言中,FALSE可以用F代替,这样比较简洁 ##在这里我们以频率/组距来作为纵坐标,并且只绘制3个直方条出来 ?...#接下来为直方图加上正态分布曲线 x <- mtcars$mpg ##将mtcars的变量mpg赋值给变量x h<-hist(x, breaks=10, col="red", xlab="Miles Per
一、C 语言发展 C 语言 被开发之前 并 没有经过 缜密 的 设计 , 而是在 使用过程中 逐渐完善的 ; C 语言发展经过如下阶段 : 初始阶段 : 1972年至1978年 , C语言 初步形成 ,...C99 , C11 , C17 等标准 , 以满足新的编程需求 ; 二、C 语言缺陷 C 语言有如下缺陷 : C 语言 没有经历过 缜密的 设计过程 , 都是根据需求逐渐完善的 , 出现了很多缺陷和漏洞...2、C 语言与 C++ 语言关系 C 语言 与 C++ 语言 并 不是 竞争关系 ; C++ 语言 是 以 C 语言为基础 的 加强版本编程语言 , 可以看作是更好的 C 语言 , 在 C++ 语言...中 , 可以使用 C 语言语法 , 对 C 语言完全兼容 ; C++ 语言 包含 C 语言 , 在 C++ 代码中可以使用 C 语言的语法 , 但是在 C 语言中不能使用 C++ 的语法 ; 3、C++...语言应用场景 C 语言 和 C++ 语言的应用场景 : C语言 应用场景 : 系统软件、操作系统、编译器等 底层系统级应用 ; C++ 语言 应用场景 : 大型应用程序、游戏 等更 高级的应用 ; 在不同的
程序员 Dobiasd 绘制七种编程语言的学习曲线图。 这些语言是:JavaScript、Java、C++、Python、Lisp、Haskell、PHP JavaScript ? Java ?...C++ ? Python ? Lisp ? Haskell ? PHP ?
领取专属 10元无门槛券
手把手带您无忧上云