首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

2022三大腾讯犀牛鸟专项研究计划 | 研究主题合集六:定位技术

腾讯犀牛鸟专项研究计划旨在连接产学智脑,搭建面向科技创新的产学研深度合作平台。2022年度三大腾讯犀牛鸟专项研究计划——AI Lab专项、微信专项和大出行专项已经发布,共计近20个研究主题,拟立项约70项。 为便于各领域老师了解, 将按自然语言处理与知识图谱、计算机视觉及图像处理、机器学习、语音技术、个性化推荐技术、定位技术和金融科技等方向整理三个专项的相关研究主题,本周内分为8篇文章推送,敬请关注。 本文推送“定位技术”相关研究主题,点击下方“阅读原文”,可跳转至课题详细介绍。 2022腾讯大出行犀牛鸟专

01

FACEGOOD 推出10万点人脸关键点跟踪,重新定义工业级人脸3D重建

人脸关键点检测在安防、金融、娱乐等领域具有广泛的应用,可以说已经成为非常基础的算法,我们先来回顾一下它的发展历史,Tim Cootes & Chris Taylor 在 1995 提出了一种新的方法(Active Shape Model)开创了人脸关键点对齐的先河,ASM 引入了统计模型来解决对齐问题,紧接着三年之后,他俩在此基础上发展出了 Active Appreance Model,这个方法有很重的历史地位,要知道当时人脸对齐问题是个很棘手的事,传统的 CV 算法太粗暴,难以应付人脸这种高纬特征,AAM 之后算是进入了一个正确的方向,为后来神经网络方法奠定了基础,基本思想是 ASM 并没有考虑到纹理特征,只是对 landmark 训练了一个统计模型出来,AAM 进一步优化了 ASM,在回归的过程中加入了纹理特征,这样就解决了特征的泛化匹配的问题,使得人脸对齐更加鲁棒。20 年之后,在众多研究者不断推动下 2D 人脸对齐问题已经彻底解决了,算法也已经白菜化,随便在 github 都有大量的精度不错的开源项目。

01
领券