线性滤波 1.1. 方框滤波 demo 1.2. 均值滤波 demo 1.3. 高斯滤波 demo 二. 非线性滤波 2.1. 中值滤波 demo 2.2. 双边滤波 demo 结构体参考 一....线性滤波 1.1. 方框滤波 方框滤波是所有滤波器中最简单的一种滤波方式。每一个输出像素的是内核邻域像素值的平均值得到。...非线性滤波 非线性滤波器的原始数据与滤波结果是一种逻辑关系,即通过比较一定邻域内的灰度值大小来实现的。 2.1....中值滤波 中值滤波原理: 简言之中值滤波就是把函数框(如图中的3 X 3)内的灰度值按顺序排列,然后中值取代函数框中心的灰度值。...中值滤波在一定的条件下可以克服常见线性滤波器如方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用
OpenCV中提供了三种常用的线性滤波函数,它们分别是方框滤波,均值滤波和高斯滤波。 均值滤波 均值滤波从频域来看,它是一种低通滤波器,高频信号会被滤掉。...均值滤波有平均均值滤波和加权均值滤波。...均值滤波可以模糊图像从而得到图像的大致描述。 方框滤波 方框滤波和均值滤波的原理是类似的,因为均值滤波是方框滤波的归一化表现。在OpenCV中,方框滤波使用的模板如下: ?...高斯滤波 百度百科是这样介绍高斯滤波的,很清晰明了。 高斯滤波是一种线性平滑滤波,适用于消除高斯噪声(高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声)。...介绍完了方框滤波,均值滤波和高斯滤波的原理之后,我们来看看OpenCV提供的实现滤波的API。 filter2D函数 首先介绍filter2D函数,这个函数需要给出卷积核即可实现各种滤波操作。
这篇文章详细讲解讲解Python调用OpenCV实现图像平滑,包括五种算法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波。...希望文章对您有所帮助,如果有不足之处,还请海涵~ 一.图像平滑 二.均值滤波 三.方框滤波 四.高斯滤波 五.中值滤波 六.双边滤波 该系列在github所有源代码: https://github.com...这就需要通过图像平滑方法来消除这些噪声并保留图像的边缘轮廓和线条清晰度,本文将详细介绍五种图像平滑的滤波算法,包括均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波。...---- 4.常见图像平滑算法 接下来将详细介绍OpenCV中常用的一些滤波器,包括均值滤波、方框滤波、高斯吕波、中值滤波等,如表所示。...一.图像平滑 二.均值滤波 三.方框滤波 四.高斯滤波 五.中值滤波 六.双边滤波 ---- 参考文献: [1] 罗子江. Python中的图像处理[M].
在数字图像处理常见的变换核及其用途中,已经说明了线性滤波。线性滤波是算术运算,有固定的模板,即:变换核。 现在来介绍非线性滤波技术。 中值滤波 中值滤波是非线性滤波,没有固定的变换核。...中值滤波对脉冲噪声(椒盐噪声)有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。这些优良特性是线性滤波方法所不具有的。此外,中值滤波的算法比较简单,也易于用硬件实现。...中值滤波在一定的条件下可以克服常见线性滤波器如最小均方滤波、方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用...双边滤波 双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。...双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。
在空域图像处理中,常用的去噪方法:均值滤波、中值滤波、高斯滤波。 如果不想仔细看这篇文章的,也可以直接下载这个设计的完整程序。本文下面是有程序的,大家也可以一边阅读一边试程序。 ?...中值滤波及均值滤波 中值滤波 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一个像素点的值,用该像素点的一个邻域中各点值的中间值代替,让周围的像素值接近的真实值...使用中值滤波对图像中的脉冲噪声、椒盐噪声去除效果明显,能够保护信号的边缘,使之不被模糊[1]。...理论方法 中值滤波方法:对一个数字信号序列xj (-∞滤波处理时,首先要定义一个长度为奇数的L长窗口,L=2N+1,N为正整数。...对这L个信号样本值按从小到大的顺序排列后,其中值,在i处的样值,便定义为中值滤波的输出值y(i)=med[x(i-N),…,x(i),…,x(i+N)] 步骤如下: 建立一个奇数长度L=2N+1的滑动滤波窗口
希望文章对您有所帮助,如果有不足之处,还请海涵~ 本篇文章主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波。全文均是基础知识,希望对您有所帮助。...知识点如下: 1.图像平滑 2.均值滤波 3.方框滤波 4.高斯滤波 5.中值滤波 PS:本文介绍图像平滑,想让大家先看看图像处理的效果,后面还会补充一些基础知识供大家学习。
然后再看内存窗口,就会发现u的存储是跟原始数据给的顺序是一样的,所以C51和C52是大端的!! ?
下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.低通滤波器 使用说明:将下列代码幅值然后以m文件保存,文件名要与函数名相同,这里函数名:lowp。...,滤波器的滤波特性曲线图和滤波后的时频图,通过图可以看出成功留下了100Hz的低频成分而把不要的高频成分去除了。...,滤波器的滤波特性曲线图和滤波后的时频图,通过图可以看出成功留下了400Hz的高频成分而把不要的低频成分100Hz去除了。...,第二幅是滤波器的滤波曲线图,第三幅是经滤波后的测试信号时频图。...(y,fs,1); z=bands(y,110,190,140,160,0.1,30,fs); figure;hua_fft(z,fs,1); 运行结果如下图,第一幅是滤波前测试信号的频谱图,第二幅是滤波器的滤波曲线图
1、原理 高斯滤波是以距离为权重,设计滤波模板作为滤波系数,只考虑了像素间的空间位置上的关系,因此滤波的结果会丢失边缘的信息。...高斯滤波的缺陷如下图所示:平坦区域正常滤波,图像细节没有变化,而在突变的边缘上,因为只使用了距离来确定滤波权重,导致边缘被模糊。...在高斯基础上,进一步优化,叠加了像素值的考虑,因此也就引出了双边滤波,一种非线性滤波,滤波效果对保留边缘更有效。 为了理解双边滤波的距离和像素差两个影响因素,先说明下面两个概念帮助理解。...空间距离:当前点距离滤波模板中心点的欧式距离。 灰度距离:当前点距离滤波模板中心点的灰度的差值的绝对值。...双边滤波的效果如下图,在突变的边缘上,使用了像素差权重,所以很好的保留了边缘。 双边滤波的原理如下图所示。
import cv2 o=cv2.imread("C:/Users/xpp/Desktop/Lena.png")#原始图像 r=cv2.GaussianBlur(o,(5,5),0,0)#高斯滤波 cv2....imshow("original",o) cv2.imshow("result",r) cv2.waitKey() cv2.destroyAllWindows() 算法:高斯滤波将中心的权重值增加...dst=cv2.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType) dst表示返回值,表示进行高斯滤波后得到的结果 src表示输入图像,图像深度是CV..._8U、CV_16U、CV_16S、CV_32F、CV_64F ksize表示滤波核的大小,即邻域图像的高度和宽度 sigmaX表示卷积核在水平方向上(X轴方向)的标准差,其控制的是权重比例 sigmaY...,滤波核越大,计算量越大,没有进行归一化处理的卷积核进行滤波,得到的结果往往是错误的。
original',img) grayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) dst=sfr.equalize(grayImage,disk(5))#半径为5的圆形滤波器...cv2.imshow("result",dst) cv2.waitKey(0) cv2.destroyAllWindows() 算法:dequalize滤波是均衡化滤波,利用局部直方图对图像进行均衡化滤波...直方图对图像进行均衡化滤波从本质上是一种归一化算法,将目前灰度区间较窄的范围通过一种非线性的方式在整个像素可视空间重映射,最后达到一种图像增强效果的目的。
original',img) grayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) dst=sfr.entropy(grayImage,disk(1))#半径为1的圆形滤波器...cv2.imshow("result",dst) cv2.waitKey(0) cv2.destroyAllWindows() 算法:entropy滤波是图像局部熵,熵是使用基为2的对数运算出来的
import cv2 o=cv2.imread("C:/Users/xpp/Desktop/Lena.png")#原始图像 r3=cv2.blur(o,(3,3))#使用3x3卷积核的均值滤波 r5=cv2....blur(o,(5,5))#使用5x5卷积核的均值滤波 cv2.imshow("original",o) cv2.imshow("result3",r3) cv2.imshow("result5",r5...) cv2.waitKey() cv2.destroyAllWindows() 算法:均值滤波是用当前像素点周围像素点的均值来代替当前像素值。...该方法遍历处理图像内的每一个像素点,即可完成整幅图像的均值滤波。..._32F、CV_64F ksize表示滤波核大小,即邻域图像的高度和宽度 anchor表示锚点,即均值均值滤波的均值的点位于核的中心点位置,可选参数 borderType表示边界样式,可选参数 例子:
import cv2 o=cv2.imread("C:/Users/xpp/Desktop/Lena.png")#原始图像 r=cv2.boxFilter(o,-1,(100,100))#方框滤波 cv2....imshow("original",o) cv2.imshow("reault",r) cv2.waitKey() cv2.destroyAllWindows() 算法:方框滤波可以自由选择是否对均值滤波的结果进行归一化...,即可以自由选择滤波结果是邻域像素值之和的平均值还是邻域像素值之和。...src表示输入图像,图像深度是CV_8U、CV_16U、CV_16S、CV_32F、CV_64F ddepth表示处理结果图像的图像深度,一般使用-1表示与原始图像使用相同的图像深度 ksize表示滤波核的大小...,即邻域图像的高度和宽度 anchor表示锚点,其默认值是(-1,-1),表示当前计算均值的点位于核的中心点位置,可选参数 normalize表示在滤波时是否进行归一化(将计算结果规范化为当前像素值范围内的值
是通过观测信息及状态转移及观测模型对状态进行光滑、滤波及预测的方法。而KF、EKF及UKF的滤波问题都可以通过贝叶斯估计状态信息的后验概率分布来求解。...然后,它将上一时刻获得的状态信息的后验分布作为新的先验分布,利用贝叶斯定理,建立一个贝叶斯递推过程,从而得到了贝叶斯递推公式,像常用的卡尔曼滤波、扩展卡尔曼滤波、不敏卡尔曼滤波以及粒子滤波都是通过不同模型假设来近似最优贝叶斯滤波得到的...2 粒子滤波 2.1 定义 粒子滤波也是一种非线性算法,是基于门特卡罗仿真的最后回归贝叶斯滤波算法,通过对后验概率密度进行数值近似求解,感觉是完全从大数定理统计的角度来解决问题。...2.2 原理 滤波问题中的困难主要在于后验概率的计算,粒子滤波的出发点是:只要从后验概率中采样很多粒子,用它们的状态求平均就得到了滤波结果。 1....(SIS+重采样=标准的粒子滤波) 5.
前言 此文档主要是针对有一定C/C++编程基础,并打算用Keil从事C51开发的开发人员。C51涉及的知识比较多,但是入门基本的开发,还是容易的。 C51简介 1....C51概念 C51继承于C语言,主要运行于51内核的单片机平台。...C51语法 1....其他 C51不支持引用。 static修饰函数和变量,让函数和变量只能为本文件所使用,避免命名冲突。 C51支持位域,位域的效率比bit低。...Keil调试C51 Keil自带的仿真器还是非常强大的,可以用来调试通用的C51代码,对于学习C51了解C51的运行机制,帮助非常大。
形态学滤波(二) 之Tophat滤波 Tophat滤波变换实际上是原图像与“开运算”的结果图之差。算法的数学表达式如下: 因为开运算带来的结果是放大了裂缝或者局部低亮度的区域。...Tophat滤波算法通常应用在红外小目标识别场合。 Tophat变换没有反馈环节,流水线设计无疑是最好的设计方式。采用自顶向下的设计方式,系统顶层为原图输入数据流与原图的开运算之差。
中值滤波使用当前像素点和它周围的8个像素点的中值来代替当前点额像素点,这个办法对去除椒盐噪声非常有效。...如果图片中某一块像素的数值如下: 120 130 134 122 123 122 125 146 124 9个数值排序后为:120 122 122 123 124 125 130 134 146 所以使用中值滤波后中间的像素点会替换为...124 中值滤波的 C语言实现: void medianBlur(Mat img, Mat dst, int ksize) { //ksize必须为奇数 if (ksize % 2 =
import cv2 o=cv2.imread("C:/Users/xpp/Desktop/Lena.png")#原始图像 r=cv2.medianBlur(o,99)#中值滤波 cv2.imshow(..."original",o) cv2.imshow("result",r) cv2.waitKey() cv2.destroyAllWindows() 算法:中值滤波取当前像素点及其周围临近像素点(...中值滤波对极限像素额敏感度远不如像素平均值,克服了线性滤波器模糊图像细节的缺点,达到既消除中值滤波常用于保护图像边缘信息,对消除椒盐噪声非常有效,在光学测量条纹图像的相位分析处理中有特殊作用,但在条纹中心分析方法中作用不大...dst=cv2.medianBlur(src,ksize) dst表示返回值,表示进行中值滤波后的结果 src表示输入图像,图像深度是CV_8U、CV_16U、CV_16S、CV_32F、CV_64F...=93 注意:滤波核的大小必须是比2大的奇数,比如3、5、7等。
领取专属 10元无门槛券
手把手带您无忧上云