展开

关键词

ETL是什么_ETL平台

各个业务系统中分布的、异构的数据源,经过ETL过程的数据抽取、转换,最终存储到目标数据库或者数据仓库,为上层BI数据分析,或其他业务功能做数据支撑。 ---- 四、ETL与ELT有什么区别 ETL架构按其字面含义理解就是按照E-T-L这个顺序流程进行处理的架构:先抽取、然后转换、完成后加载到目标数据库中。 当ETL过程需要提高效率,则可以通过对相关数据库进行调优,或者改变执行加工的服务器就可以达到。 五、如何才能做好ETL 1、数据抽取设计 数据的抽取需要在调研阶段做大量工作,要搞清楚以下几个问题:数据是从几个业务系统中来?各个业务系统的数据库服务器运行什么DBMS? (3)对于文件类型数据源(.txt,.xls) 可以培训业务人员利用数据库工具将这些数据导入到指定的数据库,然后从指定的数据库抽取。

6520

数据库同步工具etl之kettle

公司领导交给我了一个活,让我用etl工具将数据清洗,并同步到我们公司的数据中心,于是我便在网上找教程学习了etlETL ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换,迁移,所以了解并掌握一种etl工具的使用, Kettle这个ETL工具集,它允许你管理来自不同数据库的数据,通过提供一个图形化的用户环境来描述你想做什么,而不是你想怎么做。 ktr; 2)创建一个新的job,点击 保存到本地路径,例如保存到D:/etltest下,保存文件名为EtltestJob,kettle默认job文件保存后后缀名为kjb; 3) 新建转换, 然后连接源数据库和目标数据库 ,将源数据库的数据导入到目标数据库

1.1K30
  • 广告
    关闭

    腾讯云图限时特惠0.99元起

    腾讯云图是一站式数据可视化展示平台,旨在帮助用户快速通过可视化图表展示大量数据,低门槛快速打造出专业大屏数据展示。新用户0.99元起,轻松搞定数据可视化

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据库同步工具:ETL使用说明

    1 打开ETL工具 2 转换 从数据库的表导出数据到另一个数据库的表。 前提:两个数据库的表格结构相同 2.1 新建转换 文件->新建->转换 2.2 配置输入 2.2.1 拖动表输入到编辑界面 输入:需要导出数据的数据库表格。 在左侧导航栏里面,找到【输入】->【表输入】,如下图: 将【表输入】拖动到编辑界面,如下图 2.2.2 编辑表输入 1.双击 进入编辑界面 2.点击【新建】,新建数据库连接 3.配置数据库,配置完成后点击 【确定】 4.填写查询SQL语句 2.3 配置输出 2.3.1 拖动表输出到编辑界面 输出:需要导入的数据库表格。 在左侧导航栏里面,找到【输出】->【插入/更新】, 将【插入更新】拖动到编辑界面,如下图 2.3.2 编辑输出 1.配置数据库 2.浏览目标表 3.配置字段及更新设置 确定表字段对应,更新改为

    15910

    ETL

    相对于关系数据库,数据仓库技术没有严格的数学理论基础,它更面向实际工程应用。 而ETL则是主要的一个技术手段。如何正确选择ETL工具?如何正确应用ETL?    实现ETL,首先要实现ETL转换的过程。 元数据的典型表现为对象的描述,即对数据库、表、列、列属性(类型、格式、约束等)以及主键/外部键关联等等的描述。特别是现行应用的异构性与分布性越来越普遍的情况下,统一的元数据就愈发重要了。 ODBC、专用数据库接口和平面文件提取器,并参照元数据来决定数据的提取及其提取方式。   Transform 开发者将提取的数据,按照业务需要转换为目标数据结构,并实现汇总。

    5.4K21

    flink etl

    默认情况下,lookup cache 不开启,所以所有请求都会发送到外部数据库。 当 lookup cache 被启用时,每个进程(即 TaskManager)将维护一个缓存。 Flink 将优先查找缓存,只有当缓存未查找到时才向外部数据库发送请求,并使用返回的数据更新缓存。 缓存中的记录可能不是最新的,用户可以将 lookup.cache.ttl 设置为一个更小的值以获得更好的刷新数据,但这可能会增加发送到数据库的请求数。所以要做好吞吐量和正确性之间的平衡。

    29340

    谈谈ETL

    ETL绝不是三个单词直译这么简单,三个数据环节紧密连接构成体系庞大、技术复杂度的数据生态系统。 ETL有三个难题:一是,数据的集成效率是评估抽取能力的主要考点;二是,数据的高类聚低耦合的组织结构是转换的难点;三是,数据的信息化智能化是加载的终极目标。 四,数据角色来自ETL分工 围绕ETL 的不同阶段,工程师按岗位分工也是不同的。

    15550

    谈谈ETL

    ETL绝不是三个单词直译这么简单,三个数据环节紧密连接构成体系庞大、技术复杂度的数据生态系统。 ETL有三个难题:一是,数据的集成效率是评估抽取能力的主要考点;二是,数据的高类聚低耦合的组织结构是转换的难点;三是,数据的信息化智能化是加载的终极目标。 四,数据角色来自ETL分工 围绕ETL 的不同阶段,工程师按岗位分工也是不同的。

    11130

    ETL工程】大数据技术核心之ETL

    对现有数据库管理技术的挑战。 2. 经典数据库技术并没有考虑数据的多类别(variety)、SQL(结构化数据查询语言),在设计的一开始是没有考虑到非结构化数据的存储问题。 3. 提纲: 数据采集:ETL 数据存储:关系数据库、NoSql、SQL等 数据管理:(基础架构支持)云存储、分布式文件系统 数据分析与挖掘:(结果展现)数据的可视化 本文章的目的,不是为了让大家对ETL的详细过程有彻底的了解 大数据技术之数据采集ETL: 这里不过多的说数据采集的过程,可以简单的理解:有数据库就会有数据。 这里我们更关注数据的ETL过程,而ETL前期的过程,只需要了解其基本范畴就OK。 ETL包含E,T,L还有日志的控制,数据模型,原数据验证,数据质量等等方面 例如我们要整合一个企业亚太区的数据,但是每个国家都有自己的数据源,有的是ERP,有的是Access,而且数据库都不一样,好要考虑网络的性能问题 引擎中进行(SQL无法实现的) ·在数据库中进行(SQL可以实现的) 3.

    1.7K100

    Kettle构建Hadoop ETL实践(一):ETL与Kettle

    在数据仓库环境中,一般不使用数据库来保证数据的参考完整性,即不使用数据库的外键约束,它应该由ETL工具或程序来维护。 这里的分区只是概念上类似于数据库的分区,Kettle并没有针对数据库分区有什么功能,一般认为数据库应该比ETL更适合完成数据分区。 如果不能在数据库里进行连接这样的操作,如数据的来源不同,也应该在数据库里排序,以便在ETL里做连接操作。 5. 连接与事务 数据库连接只在执行作业或转换时使用。 目前有三种常见资源库:数据库资源库、Pentaho资源库和文件资源库。 数据库资源库:把所有的ETL信息保存在关系数据库中。这种资源库比较容易创建,详见本专题的(十二)Kettle元数据管理。 数据库连接更是支持53种数据库之多。可以说当前Kettle原生已经几乎支持所有常见数据源和ETL功能需求,而且步骤、作业项、数据库种类还会随着Kettle的版本更新而不断增加。

    2.2K65

    ETL CSV to Elasticsearch

    record): for i in record: record[i]=str(record[i]).encode('utf-8') return record def etl_csv_to_es es.indices.flush(index=[indexName]) return (True,count) #main if __name__ == "__main__": res,num = etl_csv_to_es

    18630

    java etl 简单实例_东方通ETL开发实例

    东方通ETL开发实例 下面通过一个简单的“Oracle CDC增量抽取”实例,带大家感受一下TIETL的 开发思路和强大的数据处理能力。 功能需求: 同一数据库(localhost_etl)下,现有cdc_source和cdc_target两张表如下: 表cdc_source 表cdc_target 现表cdc_source的增量(增、删 转换设计: 根据对需求的分析结合TIETL现有的组件设计如下 因TIETL对数据库插入/更新和删除操作做了区别对待,所以通过中间的内容路径进行流程控制。 现分别对每个组件进行配置和解释。 OPERATION$包括数据库插入、更新、删除操作分别对应值I,UN,D 提交记录数量为一次提交数量,若CDC增量多于这个值则会分次执行。 勾选“不执行任何更新”后只执行插入操作。

    9120

    大数据ETL详解

    ETL是BI项目最重要的一个环节,通常情况下ETL会花掉整个项目的1/3的时间,ETL设计的好坏直接关接到BI项目的成败。 1、与存放DW的数据库系统相同的数据源处理方法   这一类数源在设计比较容易,一般情况下,DBMS(包括SQLServer,Oracle)都会提供数据库链接功能,在DW数据库服务器和原业务系统之间建立直接的链接关系就可以写 2、与DW数据库系统不同的数据源的处理方法。   这一类数据源一般情况下也可以通过ODBC的方式建立数据库链接,如SQL Server和Oracle之间。 3、对于文件类型数据源(.txt,,xls),可以培训业务人员利用数据库工具将这些数据导入到指定的数据库,然后从指定的数据库抽取。 这一类数据也要分类,对于类似于全角字符、数据前后有不面见字符的问题只能写SQL的方式找出来,然后要求客户在业务系统修正之后抽取;日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库

    10720

    大数据ETL实践探索(1)---- python 与oracle数据库导入导出

    大数据ETL 系列文章简介 本系列文章主要针对ETL大数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战 系列文章: 1.大数据ETL实践探索(1)---- python 与oracle数据库导入导出 2.大数据ETL实践探索(2)---- python 与aws 交互 3.大数据ETL实践探索(3) ---- pyspark 之大数据ETL利器 4.大数据ETL实践探索(4)---- 之 搜索神器elastic search 5.使用python对数据库,云平台,oracle,aws,es导入导出实战 6.aws ec2 配置ftp----使用vsftp 7.浅谈pandas,pyspark 的大数据ETL实践经验 ---- ETL 简介 ETL,是英文 Extract-Transform-Load ---- 1. oracle数据泵 导入导出实战 1.1 数据库创建 本文主要使用最新版本的oracle 12c,如果创建oracle数据库时候使用了数据库容器(CDB)承载多个可插拔数据库(PDB)的模式

    86640

    大数据ETL实践探索(3)---- 大数据ETL利器之pyspark

    ---- 大数据ETL 系列文章简介 本系列文章主要针对ETL大数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战 本地文件上传至aws es spark dataframe录入ElasticSearch 等典型数据ETL功能的探索。 系列文章: 1.大数据ETL实践探索(1)---- python 与oracle数据库导入导出 2.大数据ETL实践探索(2)---- python 与aws 交互 3.大数据ETL实践探索(3) ---- pyspark 之大数据ETL利器 4.大数据ETL实践探索(4)---- 之 搜索神器elastic search 5.使用python对数据库,云平台,oracle,aws,es导入导出实战 6.aws ec2 配置ftp----使用vsftp 7.浅谈pandas,pyspark 的大数据ETL实践经验 ---- pyspark Dataframe ETL 本部分内容主要在 系列文章

    1.2K20

    c语言开发ETL,【ETL开发工作内容|工作职责|ETL开发做什么】-看准网「建议收藏」

    工具应用 ETL工具的典型代表有:Informatica、Datastage、OWB、微软DTS、Beeload、Kettle、久其ETL…… 开源的工具有eclipse的etl插件:cloveretl 数据集成:快速实现ETL ETL的质量问题具体表现为正确性、完整性、一致性、完备性、有效性、时效性和可获取性等几个特性。 元数据的典型表现为对象的描述,即对数据库、表、列、列属性(类型、格式、约束等)以及主键/外部键关联等等的描述。特别是现行应用的异构性与分布性越来越普遍的情况下,统一的元数据就愈发重要了。 体系结构 下图为ETL体系结构 ,它体现了主流ETL产品框架的主要组成部分。ETL是指从源系统中提取数据,转换数据为一个标准的格式,并加载数据到目标数据存储区,通常是数据仓库。 Extract 通过接口提取源数据,例如JODBC、专用数据库接口和平面文件提取器,并参照元数据来决定数据的提取及其提取方式。

    4810

    Kettle构建Hadoop ETL实践(七):定期自动执行ETL作业

    为了确保数据流的稳定,需要使用所在平台上可用的任务调度器来调度ETL定期执行。调度模块是ETL系统必不可少的组成部分,它不但是数据仓库的基本需求,也对项目的成功起着举足轻重的作用。 为了演示Kettle对数据仓库的支持能力,我们的示例将使用Start作业项实现ETL执行自动化。 图7-1 Oozie体系结构 Oozie是一种Java Web应用程序,它运行在Java Servlet容器、即Tomcat中,并使用数据库来存储以下内容: 工作流定义。 在安装CDH时,我们配置使用MySQL数据库存储Oozie元数据。关于示例环境CDH的安装参见“基于Hadoop生态圈的数据仓库实践 —— 环境搭建(二)”。 metastore > /tmp/sqoop_metastore.log 2>&1 & metastore工具配置Sqoop作业的共享元数据信息存储,它会在当前主机启动一个内置的HSQLDB共享数据库实例

    81553

    Kettle构建Hadoop ETL实践(四):建立ETL示例模型

    Hive事务支持的限制 三、建立数据库表 1. 源数据库表 2. RDS库表 3. TDS库表 四、装载日期维度数据 五、小节 ---- 从本篇开始,介绍使用Kettle实现Hadoop数据仓库的ETL过程。 我们会引入一个典型的订单业务场景作为示例,说明多维模型及其相关ETL技术在Kettle上的具体实现。 ETL处理时间周期为每天一次,事实表中存储最细粒度的订单事务记录。 (3)确认维度。显然产品和客户是销售订单的维度。 至此,我们的示例数据仓库模型搭建完成,后面在其上将实现ETL。 五、小节 我们使用一个简单而典型的销售订单示例,建立数据仓库模型。

    69110

    python ETL工具 pyetl

    pyetl是一个纯python开发的ETL框架, 相比sqoop, datax 之类的ETL工具,pyetl可以对每个字段添加udf函数,使得数据转换过程更加灵活,相比专业ETL工具pyetl更轻量,纯 python代码操作,更加符合开发人员习惯 安装 pip3 install pyetl 使用示例 数据库表之间数据同步 from pyetl import Task, DatabaseReader writer = DatabaseWriter("sqlite:///db2.sqlite3", table_name="target") Task(reader, writer).start() 数据库表到 lambda x: x.strip()} Task(reader, writer, columns=columns, functions=functions).start() 继承Task类灵活扩展ETL 工具 pyetl的文章就介绍到这了,更多相关python ETL工具 pyetl内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

    1.3K10

    美图离线ETL实践

    需要满足数据库仓库规范,数据按不同层(STG 层、ODS 层等)、不同库(default.db、meipai.db 等)、不同分区(必须指定时间分区)落地。 4.容错性。 ETL 有两种形式:实时流 ETL 和 离线 ETL。 美图目前仅使用实时流 ETL 进行数据注入和清洗的工作。 ? 图 2 根据 Lambda 结构,如果实时流 ETL 出现故障需要离线 ETL 进行修补。 离线 ETL 是从 Kafka拉取消息,经过 ETL 再从 HDFS 落地。为了提高实时性及减轻数据压力,离线 ETL 是每小时 05 分调度,清洗上一个小时的数据。 图 4 如图 4 所示是离线 ETL 的基本工作流程: 1.kafka-etl 将业务数据清洗过程中的公共配置信息抽象成一个 etl schema ,代表各个业务不同的数据; 2.在 kafka-etl

    74600

    大数据ETL实践探索(1)---- python 与oracle数据库导入导出

    ---- 大数据ETL 系列文章简介 本系列文章主要针对ETL大数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战 系列文章: 1.大数据ETL实践探索(1)---- python 与oracle数据库导入导出 2.大数据ETL实践探索(2)---- python 与aws 交互 3.大数据ETL实践探索(3) ---- pyspark 之大数据ETL利器 4.大数据ETL实践探索(4)---- 之 搜索神器elastic search 5.使用python对数据库,云平台,oracle,aws,es导入导出实战 6.aws ec2 配置ftp----使用vsftp 7.浅谈pandas,pyspark 的大数据ETL实践经验 ---- ETL 简介 ETL,是英文 Extract-Transform-Load ---- 1. oracle数据泵 导入导出实战 1.1 数据库创建 本文主要使用最新版本的oracle 12c,如果创建oracle数据库时候使用了数据库容器(CDB)承载多个可插拔数据库(PDB)的模式

    88831

    相关产品

    • 数据库

      数据库

      腾讯云数据库(TencentDB)是腾讯提供的高可靠、高可用、可弹性伸缩的云数据库服务产品的总称。可轻松运维主流开源及商业数据库,它更拥有容灾、数据传输服务、安全服务、灾备和智能 DBA 等全套服务。 可提供于电商、金融、游戏、互联网等不同场景完美的解决方案。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券