学习
实践
活动
工具
TVP
写文章

ETL数据集成,一站式数据处理平台

RestCloud ETL数据集成平台,全Web基于微服务架构的云原生数据集成平台,提供丰富的数据集成组件支持最为复杂的数据集成和传输能力。 基于微服务架构的新一代数据集成平台,为企业提供业务系统数据之间的集成以及异构数据源之间的数据传输于一体的一站式的数据处理平台,全Web化配置开箱即用,多种异构数据源之间通过平台快速进行数据交换,快速帮助企业构建数据集成平台 ETL数据集成平台介绍.png 一、平台的主要优势 1、基于微服务架构开发支持分布式部署同时支持上万流程的调度与执行; 2、专为解决大型企业的复杂数据集成场景而研发; 3、支持完整的跨数据库事务控制, 支持执行流程的动态回放功能,对于复杂的数据集成流程可以清析的看到数据的传输路径及时定位错误。 RestCloud ETL数据集成平台支持在Mongo DB中存储所有源表到目标表之间的交换数据,可根据源表或目标查看数据的来龙去脉对数据交换的过程进行全程掌控,同时支持使用Mongo DB作为缓冲库来存储传输的数据

39400

集成架构」Talend ETL 性能调优宝典

作为Talend的客户成功架构师,我花了大量时间帮助客户优化他们的数据集成任务——不管是在Talend数据集成平台还是大数据平台上。 这就是为什么我建议客户使用结构化方法来调优数据集成任务的性能。拥有策略的一个关键好处是它是可重复的——不管您的数据集成任务是做什么,它们是多么简单还是多么复杂,以及作为集成的一部分而移动的数据量。 您有一个Talend数据集成标准作业,它从Oracle OLTP数据库中读取数据,在tMap中进行转换,并将其加载到Netezza数据仓库中。 第二件事—吞吐量(读取/转换/写入数据的速率)—是比运行时间更准确的性能度量。我们的目标是减少运行时间,并通过在数据集成管道的每个阶段增加吞吐量来解决这个问题。 理想情况下,文件系统应该专门用于存储和管理数据集成任务的文件。在我的一次任务中,存储源文件的文件系统与邮件服务器备份共享—因此,当运行夜间邮件备份时,我们对文件系统的读取将显著减慢。

48120
  • 广告
    关闭

    腾讯云图限时特惠0.99元起

    腾讯云图是一站式数据可视化展示平台,旨在帮助用户快速通过可视化图表展示大量数据,低门槛快速打造出专业大屏数据展示。新用户0.99元起,轻松搞定数据可视化

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据ETL详解

    ETL是BI项目最重要的一个环节,通常情况下ETL会花掉整个项目的1/3的时间,ETL设计的好坏直接关接到BI项目的成败。 ETL也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更高,为项目后期开发提供准确的数据。   ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。 在设计ETL的时候也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS中(这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率。 ETL三个部分中,花费时间最长的是T(清洗、转换)的部分,一般情况下这部分工作量是整个ETL的2/3。数据的加载一般在数据清洗完了之后直接写入DW(Data Warehouse)中去。    ETL日志与警告发送   1、ETL日志,记录日志的目的是随时可以知道ETL运行情况,如果出错了,出错在那里。   ETL日志分为三类。

    18820

    ETL工程】大数据技术核心之ETL

    提纲: 数据采集:ETL 数据存储:关系数据库、NoSql、SQL等 数据管理:(基础架构支持)云存储、分布式文件系统 数据分析与挖掘:(结果展现)数据的可视化 本文章的目的,不是为了让大家对ETL的详细过程有彻底的了解 这里我们更关注数据ETL过程,而ETL前期的过程,只需要了解其基本范畴就OK。 在数据挖掘的范畴了,数据清洗的前期过程,可简单的认为就是ETL的过程。 ETL的发展过程伴随着数据挖掘至今,其相关技术也已非常成熟。这里我们也不过多的探讨ETL过程,日后如有涉及,在细分。 概念: ETL(extract提取、transform转换、load加载)。 ETL负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后,进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘提供决策支持的数据。 异常处理 在ETL的过程中,必不可少的要面临数据异常的问题,处理办法: 1. 将错误信息单独输出,继续执行ETL,错误数据修改后再单独加载。中断ETL,修改后重新执行ETL。原则:最大限度接收数据

    1.8K100

    数据ETL实践探索(3)---- 大数据ETL利器之pyspark

    ---- 大数据ETL 系列文章简介 本系列文章主要针对ETL数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战 本地文件上传至aws es spark dataframe录入ElasticSearch 等典型数据ETL功能的探索。 系列文章: 1.大数据ETL实践探索(1)---- python 与oracle数据库导入导出 2.大数据ETL实践探索(2)---- python 与aws 交互 3.大数据ETL实践探索(3) ---- pyspark 之大数据ETL利器 4.大数据ETL实践探索(4)---- 之 搜索神器elastic search 5.使用python对数据库,云平台,oracle,aws,es导入导出实战 6.aws ec2 配置ftp----使用vsftp 7.浅谈pandas,pyspark 的大数据ETL实践经验 ---- pyspark Dataframe ETL 本部分内容主要在 系列文章

    1.2K20

    数据ETL实践探索(5)---- 大数据ETL利器之 pandas

    在下面的代码片段中,数据清洗代码被封装在了一些函数中,代码的目的十分直观。 columns ------ ''' df.drop(col_names_list, axis=1, inplace=True) return df 有时,并不是所有列的数据都对我们的数据分析工作有用 这种方法可以让你更清楚地知道哪些列有更多的缺失数据,帮助你决定接下来在数据清洗和数据分析工作中应该采取怎样的行动。 %f')) 在处理时间序列数据时,你可能会遇到字符串格式的时间戳列。 这意味着我们可能不得不将字符串格式的数据转换为根据我们的需求指定的日期「datetime」格式,以便使用这些数据进行有意义的分析和展示 ---- 最近看到的python 杰出的自学资料这个项目里面的例子基本都是开源领域的大咖写的

    52330

    ETL数据建模

    一、什么是ETL ETL数据抽取(Extract)、转换(Transform)、加载(Load )的简写,它是将OLTP系统中的数据经过抽取,并将不同数据源的数据进行转换、整合,得出一致性的数据,然后加载到数据仓库中 ,集成的,数据仓库是面向主题的,是以 OLAP系统为分析目的。 在数据仓库构建中,ETL关系到整个项目的数据质量,所以马虎不得,必须将其摆到重要位置,将ETL这一 大厦根基筑牢。 五、ETL和SQL的区别与联系 如果ETL和SQL来说,肯定是SQL效率高的多。 但是双方各有优势,先说ETLETL主要面向的是建立数据仓库来使用的。ETL更偏向数据清洗,多数据数据整合,获取增量,转换加载到数据仓库所使用的工具。 所以具体我们在什么时候使用ETL和SQL就很明显了,当我们需要多数据源整合建立数据仓库,并进行数据分析的时候,我们使用ETL。如果是固定单一数据库的数据层次处理,我们就使用SQL。

    13820

    聊聊 ETL(大数据)测试!

    今天和大家分享下我作为大数据测试工程师对ETL测试的一些认识。 一、ETL测试工程师的主要责任 对于一个ETL测试工程师而言,其关键的责任有三大类: 1. 将经过转换的数据载入至目标表的各维度与指标数据与对标数据进行对标验证其一致性 二、ETL测试场景和测试用例 1. 根据对应的映射文件验证"源"与"目标数据仓库"的表结构 2. 验证从源数据多列合并而成的数据是正确的 <3>. 验证仅仅根据客户要求对源数据进行了多列合并至目标表中 8. 日期验证是ETL开发过程中常用的数据,主要用于: <1>. 不运行用户载入期望的数据 7. 性能的bug。达不到业务要求时间。 ETL测试与数据库测试的不同 1. 验证数据是否按照预期进行了移动主要验证数据是否遵循了设计预定的数据模式规则或标准 2. 验证数据经过业务转换后是否满足预定的转换逻辑以及验证源和目标数据计算是否一致主要表的主、外键等约束是否正常 3. 验证ETL过程数据表的主外键关系是否保存验证没有冗余表,数据库最佳化 4.

    21330

    【知识】ETL数据集成工具Sqoop、dataX、Kettle、Canal、StreamSets大比拼

    摘要 对于数据仓库,大数据集成类应用,通常会采用ETL工具辅助完成。 常见的ETL工具或类ETL数据集成同步工具很多,以下对开源的Sqoop、dataX、Kettle、Canal、StreamSetst进行简单梳理比较。 通过分析,笔者个人建议优先DataX更优。 2.7 Datax和Kettle的对比 比较维度 产品 Kettle DataX 设计及架构 适用场景 面向数据仓库建模传统ETL工具 面向数据仓库建模传统ETL工具 支持数据源 多数关系型数据库 、Sqoop、StreamSets https://blog.csdn.net/xiaozm1223/article/details/89670460 (2)ETL学习总结(2)——ETL数据集成工具之 kettle、sqoop、datax、streamSets 比较 https://zhanghaiyang.blog.csdn.net/article/details/104446610 (3)数据集成工具

    1.8K20

    为什么说ETL数据集成无法满足企业当下的业务需求呢?

    所有的东西都是通过这个仓库运行的,ETL数据集成的可靠工具,从源应用程序和系统中提取数据,将其加载到目标仓库中,并将其转换为可访问的形式。 但仅有ETL工具是不够的。 随着企业使用更多的数据系统,意味着需要更大的数据量和可访问性,IT团队需要处理ETL无法提供的复杂数据转换以及更多的复杂需求。 针对上文提到的需求,我们需要考虑以下场景: 复杂的业务逻辑和验证 B2B系统集成 实时集成 本文讨论了为什么ETL工具可能不足以满足这些业务需求,以及iPaaS集成解决方案如何解决这些复杂的需求。 iPaaS 解决方案 虽然 ETL 无法解决上述场景,但集成平台即服务 (iPaaS) 解决方案可以满足您和您的企业当下的数据需求。 知行之桥是一种轻量级、轻代码的iPaaS 应用程序,可让您执行复杂的实时集成并填补 ETL 功能的空白。 知行之桥提供了一个直观的拖放式工作流界面,让您无需编码即可快速构建应用程序集成流程。

    21830

    集成架构」ETL工具大比拼:Talend vs Pentaho

    为了消除这种情况,数据必须没有重复和错误,因为这样的数据不会产生预期的结果。这是数据集成很重要的地方。当数据转向可访问数据时,它使员工的工作变得更加容易,让他专注于有效的计划和预测。 这些工具通常称为ETL(提取,转换和加载)工具,Talend和Pentaho是两种这样的ETL工具,广泛用于各个行业。 在深入研究之前,让我们在这里了解基础知识。 以下是ETL工具实际含义的简单说明: 提取:通常从化合物数据库收集数据。'E'的功能是从源读取数据。 变换:与'E'相比,'T'功能相当具有挑战性,但并不复杂。 下面列出了Talend代码生成方法的优点 轻松部署(适用于独立Java应用程序) 节省时间 经济有效 任何人都同意这样一个事实,即实现ETL工具的整个目的是帮助实体利用数据集成来使用各种部署模型和基础架构来规划其策略 虽然Talend是一个开源数据集成工具,但如果他们利用其提供更多附加功能的订阅,则可以从该工具中获益更多。

    1.2K21

    【项目实战】ETL 数据导入

    操作说明 数据已经在 MySQL 中生成,接下来就开始进行数据仓库的搭建环节。首先最重要的,也是首要的流程便是 ETL。这个阶段,因为是对结构化数据进行抽取,所以直接使用 Sqoop 工具即可。 Sqoop 工具被安装到了 Node03 中,所以在 Node03 中编写脚本调用 Sqoop 进行数据抽取;而脚本化的编写也有助于之后的自动化执行。 操作流程 1. 编写 Sqoop 数据导入脚本,对不同的表采用了较为不同的方法,脚本材料如下: cd /home/warehouse/shell vim sqoop_import.sh # 添加内容 #! delete-target-dir \ --num-mappers 1 \ --fields-terminated-by "\t" \ --query "$2"' and $CONDITIONS;' } # 数据量少

    32720

    -数据仓库ETL开发

    ETL开发 概述 ETL数据仓库的后台,主要包含抽取、清洗、规范化、提交四个步骤,传统数据仓库一般分为四层模型。 分层的作用: 1.划分ETL阶段工作重心,便于管理 2.降低开发和维护成本 3.减少需求变化带来的冲击 4.便于数据问题跟踪 名词解释: ODS——操作性数据 DW——数据仓库 DM——数据集市 抽取数据,STG层面向异构数据源,最好选择用ETL工具,一般ETL工具都支持多种数据源。STG层不做数据转换。 因为很多源系统都可能进行物理删除数据,即使有逻辑删除标记,但是也可以在后台人工删除数据。 抽取数据,ODS层从STG层抽取数据,在同一个数据平台上,可以采用ETL工具,也可以手工编码。 制定数据质量测量类型 提交数据质量测量结果表,通常异常数据处理策略有:中断处理;把拒绝记录放在错误时间表里;只做标记,数据继续处理 纠正数据分为四个优先级:必须在ETL处理;最好在ETL处理

    11930

    ETL是什么_ETL平台

    随着信息化建设的不断深入,由于业务系统之间各自为政、相互独立造成的“数据孤岛”现象尤为普遍,业务不集成、流程不互通、数据不共享。这给企业进行数据的分析利用、报表开发、分析挖掘等带来了巨大困难。 ETL数据中心建设、BI分析项目中不可或缺的环节。 ---- 二、ETL是什么 ETL,即Extract-Transform-Load的缩写,是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程。 ETL数据集成的第一步,也是构建数据仓库最重要的步骤,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。 在ETL架构中,数据的流向是从源数据流到ETL工具,ETL工具是一个单独的数据处理引擎,一般会在单独的硬件服务器上,实现所有数据转化的工作,然后将数据加载到目标数据仓库中。

    11920

    -数据仓库ETL开发

    ETL开发 概述 ETL数据仓库的后台,主要包含抽取、清洗、规范化、提交四个步骤,传统数据仓库一般分为四层模型。 ? 分层的作用: 1.划分ETL阶段工作重心,便于管理 2.降低开发和维护成本 3.减少需求变化带来的冲击 4.便于数据问题跟踪 名词解释: ODS——操作性数据 DW——数据仓库 DM——数据集市 ? 抽取数据,STG层面向异构数据源,最好选择用ETL工具,一般ETL工具都支持多种数据源。STG层不做数据转换。 因为很多源系统都可能进行物理删除数据,即使有逻辑删除标记,但是也可以在后台人工删除数据。 抽取数据,ODS层从STG层抽取数据,在同一个数据平台上,可以采用ETL工具,也可以手工编码。 制定数据质量测量类型 提交数据质量测量结果表,通常异常数据处理策略有:中断处理;把拒绝记录放在错误时间表里;只做标记,数据继续处理 纠正数据分为四个优先级:必须在ETL处理;最好在ETL处理;最好在源头处理

    1.1K30

    ETL技能】白话数据仓库 ETL 搭建全过程

    ,如查询出了年度数据,可以很方便的查看月度数据;查询好地区的数据,可以再看相应城市的数据,还可以显示相应的趋势图,柱状图,饼图等,从而给决策者的判断提供有效的数据支持。 这个抽取,转换,加载的过程叫ETL(Extract, Transform,Load).相应的开发工具Oracle有DataStage,微软有SQL Server Integration Services 这些ETL工具一般都支持图形化流程建模,文本文件映射导入,XML,XSLT,可执行SQL,javascript等。 数据建模 材料准备好后,我们要规划他们可以做出什么样的菜。 相对其他商业产品,Schema Workbench比较简单,也没有和软件开发平台如Eclipse集成在一起。 多维查询 准备好了原材料和相应的菜单,接下来就是根据要求烧菜了。 以上是建立OLAP应用的几个重要环节和相关技术,最后总结一下:用户需求——数据建模——数据仓库 用户需求决定了如何设计模型和数据仓库,数据模型又是描述数据仓库的逻辑关系,而数据模型和数据仓库的某些技术限制也可能影响用户需求的实现

    1.4K101

    ETL(一):(详细步骤)使用ETL将源数据抽取到EDW层

    1、ETL中4大常用客户端 R客户端主要用于创建文件夹,不同的项目主题,应该放在不同的文件夹中; 2、ETL开发流程 ①~③在D客户端中完成; ④和⑤在W客户端中完成; ⑥在M客户端中完成; 3、需求 ; ③ 创建test1文件夹; 点击文件夹–>创建; 输入文件名,点击确定即可; 创建完成以后,就会出现如下所示的test1文件夹; 5、开发步骤如下 一个完整的ETL 开发需要依次经过如下几层:OTLP–>ODS–>EDW–>DW OLTP代表的是源数据层,因为数据的来源会不同,ETL支持好多中数据库中的数据,文件数据,这一层就是我们要处理的原始数据; ODS代表的是数据存储层 为了数据能够保持其原有状态,不损坏原始数据,我们相当于复制了一份数据放在了ODS层,该层数据才是用于我们做ETL开发的数据; EDW层是数据仓库层,用于存放我们进行数据转换、清洗过后的数据; DW层是数据集市层 ### 7、关于ETL开发中,命名需要注意的地方。

    21710

    浅谈 ETL (大数据)测试(续篇)

    今天继续和大家分享下我作为大数据测试工程师对ETL测试的一些认识。ETL测试认知续篇。 一、ETL测试类型 Production Validation Testing ---该类型的ETL测试是在数据迁移至生产系统时进行的。 Incremental ETL Testing(增量ETL测试) ---该类型测试主要验证旧数据和新数据的完整性,并添加新数据。增量测试验证增量ETL过程中,插入和更新是否满足预期的要求。 三、怎么创建ETL测试用例 <1>.ETL测试的目的是确保在业务转换完成后从源加载到目标表的数据是正确无误的。 <2>.ETL测试同样还涉及在源和目标表之间转换时的各个阶段的数据的验证。 ETL测试人员需要以此为依据来编写测试SQL查询语句,因为在ETL测试各阶段可能需要编写具有多个连接的大查询来验证数据ETL映射表在为数据验证编写查询时提供大量的有用的信息。

    16320

    扫码关注腾讯云开发者

    领取腾讯云代金券