学习
实践
活动
专区
工具
TVP
写文章
  • 广告
    关闭

    新年·上云精选

    热卖云产品新年特惠,2核2G轻量应用服务器9元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习中 GPU显存分析

    深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为 “资源” 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡 并纠正几个误区: 显存GPU 等价,使用 GPU 0 预备知识 nvidia-smi是 Nvidia 显卡命令行管理套件,基于 NVML 库,旨在管理和监控 Nvidia GPU 设备。 ? nvidia-smi 的输出 这是 nvidia-smi 命令的输出,其中最重要的两个指标: 显存占用 GPU 利用率 显存占用和 GPU 利用率是两个不一样的东西,显卡是由 GPU 计算单元和显存等组成的 ,显存GPU 的关系有点类似于内存和 CPU 的关系。 gpustat 输出 显存可以看成是空间,类似于内存。 显存用于存放模型,数据 显存越大,所能运行的网络也就越大 GPU 计算单元类似于 CPU 中的核,用来进行数值计算。

    3.7K100

    深度学习中GPU显存分析

    深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为“资源” 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡 并纠正几个误区: 显存GPU等价,使用GPU主要看显存的使用 0 预备知识 nvidia-smi是Nvidia显卡命令行管理套件,基于NVML库,旨在管理和监控Nvidia GPU设备。 ? nvidia-smi的输出 这是nvidia-smi命令的输出,其中最重要的两个指标: 显存占用 GPU利用率 显存占用和GPU利用率是两个不一样的东西,显卡是由GPU计算单元和显存等组成的,显存GPU 这里推荐一个好用的小工具:gpustat,直接pip install gpustat即可安装,gpustat基于nvidia-smi,可以提供更美观简洁的展示,结合watch命令,可以动态实时监控GPU gpustat 输出 显存可以看成是空间,类似于内存。 显存用于存放模型,数据 显存越大,所能运行的网络也就越大 GPU计算单元类似于CPU中的核,用来进行数值计算。

    1.6K11

    科普帖:深度学习中GPU显存分析

    0 预备知识 nvidia-smi是Nvidia显卡命令行管理套件,基于NVML库,旨在管理和监控Nvidia GPU设备。 ? nvidia-smi的输出 这是nvidia-smi命令的输出,其中最重要的两个指标: 显存占用 GPU利用率 显存占用和GPU利用率是两个不一样的东西,显卡是由GPU计算单元和显存等组成的,显存GPU 这里推荐一个好用的小工具:gpustat,直接pip install gpustat即可安装,gpustat基于nvidia-smi,可以提供更美观简洁的展示,结合watch命令,可以动态实时监控GPU gpustat 输出 显存可以看成是空间,类似于内存。 显存用于存放模型,数据 显存越大,所能运行的网络也就越大 GPU计算单元类似于CPU中的核,用来进行数值计算。 这里某些地方的计算结果可能和上面的公式对不上, 这是因为原始的AlexNet实现有点特殊(在多块GPU上实现的). ?

    1.1K30

    显存不够?这个方法让你的GPU联手CPU

    GPU凭借强大的并行计算能力,成为深度学习加速的标配。然而,由于服务器的显存非常有限,随着训练样本越来越大,显存连一个样本都容不下的现象频频发生。 其实CPU和GPU是协同工作的,如果能合理地利用它们各自的优势,就能够节省显存资源(显存不够内存来凑),甚至获得更好的训练性能。 GPU模式下的模型训练如图1所示,总体可以分为4步: 第1步,将输入数据从系统内存拷贝到显存。 第2步,CPU指示GPU处理数据。 第3步,GPU并行地完成一系列的计算。 这是因为GPU卡的显存是非常有限的,一般远低于系统内存。以V100为例,其显存最高也仅有32G,甚至有些显存仅12G左右。因此当模型的参数量较大时,在GPU模式下模型可能无法训练起来。 好处一:充分利用CPU资源,避免显存超出 如果使用fluid.CUDAPlace指定了全局的运行设备,飞桨将会自动把支持GPU计算的OP分配在GPU上执行,然而当模型参数量过大并且显存有限时,很可能会遇到显存超出的情况

    2.1K30

    干货|TensorFlow数据量少的时候却占GPU显存比较多

    接着做数据量小一点儿的场景,有70几万条数据,单词有6万多个,发现这个时候的GPU显存有3000多MB。训练时候的参数一模一样。按道理应该单词数多的那个显存比较大才对。 这个时候观察GPU显存,发现一开始是700多MB,盯着屏幕看了半天,突然等程序运行到1000多步的时候,发现GPU显存一下子跳到了3000多MB。这说明数据量的大小确实会对GPU显存产生影响。    这样就可以找到为什么GPU显存会一下子升高了。一开始训练一步一步的输出,程序都对,GPU显存也比较低,那为什么中间过程会升高呢? 结论   当数据量比较小,而GPU显存足够存储这些数据的时候,在训练过程中会把这些数据存在GPU显存,这样每一轮训练的时候就不用从cpu读数据了,训练速度会快些。 而当数据量比较大,而GPU显存不够时,每次GPU显存中只会存储模型和批数据。 注: 1.

    3.6K20

    浅谈多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置

    除了在代码中指定使用的 GPU 编号,还可以直接设置可见 GPU 编号,使程序/用户只对部分 GPU 可见。 操作很简单,使用环境变量 CUDA_VISIBLE_DEVICES 即可。 具体来说,如果使用单卡运行 Python 脚本,则可输入 CUDA_VISIBLE_DEVICES=1 python my_script.py 脚本将只使用 GPU1。 至于显存设置,可以设置使用比例(70%): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session (config=tf.ConfigProto(gpu_options=gpu_options)) 也可以按需增长: config = tf.ConfigProto() config.gpu_options.allow_growth 以上这篇浅谈多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置就是小编分享给大家的全部内容了,希望能给大家一个参考。

    47110

    动态 | 英伟达上演GPU「十六合一」,512GB显存独步天下

    而且英伟达的新产品也深深牵动着深度学习领域研究人员的心,更快的 GPU 、更大的显存、新的深度计算 API、更强大的计算集群等等都让更大规模、更高表现的模型变得更为平易近人。 看似槽点、其实亮点: 「世界最大的 GPU」、「世界最大的显存」 ? 高举着两倍显存的 Quadro GV100加速器的黄仁勋 值得一提的是,DGX-2 中使用的虽然还是 V100 GPU,但它发生了一点小变化 —— 原有的 4 颗 4GB HBM2 显存,升级为 4 颗 8GB HBM2 显存,也让 V100 GPU 的整体显存大小升级为 32GB。 (GPU其他参数,包括显存位宽、带宽均没有改变。)并且在 DGX-2中,16 个 V100 GPU 中各自拥有的 32GB 显存都将连接到一起,你甚至可以将它看成一整个 512GB 的显存空间。

    64380

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • GPU 云服务器

      GPU 云服务器

      腾讯GPU 云服务器是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券