之前⼀直使⽤ Tensorflow 训练模型,第⼀次训练Pytorch模型的时候,发现速度很慢,仔细观察,发现GPU 内存占⽤为0,基本没有使⽤GPU。 requestedcuda不可⽤报错,现实没有有效的驱动可使⽤测试cuda是否配置正确import torchprint(torch.cuda.is_available())重新安装cuda检测本地GPU
本系列文章推送门: 阿里云郑晓:浅谈GPU虚拟化技术(第一章) GPU虚拟化发展史 阿里云郑晓:浅谈GPU虚拟化技术(第二章)GPU虚拟化方案之——GPU直通模式 今天一个小伙伴@我说:“你浅谈一下 第三章 浅谈GPU虚拟化技术(三)GPU SRIOV及vGPU调度 GPU SRIOV原理 谈起GPU SRIOV那么这个世界上就只有两款产品:S7150和MI25。 VF调度 AMD GPU SRIOV从硬件的角度看就是一个对GPU资源的分时复用的过程。因此其运行方式也是与GPU分片虚拟化类似。SRIOV的调度信息后续重点介绍。 GPU SRIOV的调度系统 分时复用 VF的调度是GPU虚拟化中的重点,涉及到如何服务VM,和如何确保GPU资源的公平分片。 GPU SRIOV也是一个分时复用的策略。 有了这样卓越的硬件设计,才使得PF驱动在软件层面的调度算法可以如此从容有序。6ms强制调度保证了多VM在共享GPU资源的情况下不会饥饿不会过度占用。调度开销极小(2-3%)。
热卖云产品新年特惠,2核2G轻量应用服务器9元/月起,更多上云必备产品助力您轻松上云
大数据时代对计算速度提出了更高的要求,GPU处理器应运而生。那么,如何选择GPU呢?为了让大家了解不同应用场景下的GPU云服务器选型,我们邀请腾讯云大茹姐姐创作了这篇深度好文。 在深入了解不同应用场景下的GPU云服务器选型推荐之前,我们先来了解一下CPU和GPU、GPU和vGPU之间的差异。 CPU和GPU硬件结构对比GPU vs vGPUGPU云服务器提供了直通型GPU和虚拟化的vGPU,可以满足计算密集型场景和图形加速场景下的不同算力需求。 GN10XGN10Xp、GN8、GN7等整卡实例均采用GPU直通技术;vGPU是指虚拟化GPU,支持GPU资源的更细粒度划分,如12、14以及18 GPU。 多人协作场景架构图渲染是用软件从模型生成图像的过程,应用在视频、模拟和电影电视制作等领域,主要分为3D游戏的实时渲染和动画电影的离线渲染。
但应用在 GPU 场景,还是存在以下不足: 集群 GPU 资源缺少全局视角。没有直观方式可获取集群层面 GPU 信息,比如 Pod / 容器与 GPU 卡绑定关系、已使用 GPU 卡数等。 由于 GPU 卡相对昂贵,并且某些 AI 负载吃不满单张 GPU 算力,GPU Sharing 技术应运而生。 问题二:无法支持多 GPU 后端 除分配挂载整卡的方式外,TKE qGPU、vCUDA、gpu share、GPU 池化 等 GPU 共享技术越来越被用户采用。 对 GPU 成本的关注,对 GPU 资源的整体把控,对 GPU 不同后端的精准使用,都成为了客户能用好 GPU 算力的前提条件。 ,可以是一块本地 GPU 物理卡、一个 GPU 切片资源( GPU 算力 / 显存 的组合)、一个远端 GPU 设备。
TFRecord的形式上传到谷歌的对象存储服务上被TPU服务器访问 在国内就是很麻烦 因为这些问题,所以业务上,尤其是训练上,往往我们还是会依赖更传统的选择:GPU ---- 用GPU进行深度学习,那么 GPU在哪? GPU大体上可以有下面几种方式: 第一种,自己购买GPU服务器。当然了,很多时候个人要求不高,或者工作相对简单的时候,一台有独立显卡的中高端游戏笔记本,可能就已经足够完成这个工作了。 ---- 这里我介绍一下最近我在使用的第四种GPU来源:MistGPU MistGPU是一个共享AI计算平台,提供简单易用的AI计算服务。用户可以在上面使用GPU服务器训练AI模型,按时间计费。 排除一些缺点,如果只考虑性价比的话,MistGPU真是现在GPU训练服务中最高的。这种将大量的GPU资源拆散成碎片再零售的方法,既保证了用户快速使用,也保证了成本相对低廉。
= optim.SGD(net.parameters(), lr=1e-3) criteon = nn.CrossEntropyLoss().to(device) # 同样将loss部分的计算转移到GPU 上去 同样的,数据部分也可以转移到GPU上去 data, target = data.to(device), target.to(device)
在TensorFlow中,支持的设备类型是CPU和GPU。它们被表示为strings。例如: "/cpu:0":机器的CPU "/gpu:0"你的机器的GPU,如果你有一个。 "/gpu:1"你的机器的第二个GPU等 如果TensorFlow操作既具有CPU和GPU实现,则在将操作分配给设备时,GPU设备将被赋予优先级。例如, matmul具有CPU和GPU内核。 在用设备的系统cpu:0和 gpu:0,gpu:0将选择运行matmul。 允许GPU内存增长 默认情况下,TensorFlow将几乎所有GPU的GPU内存映射 CUDA_VISIBLE_DEVICES到该进程的可见内容。 如果要真正限制TensorFlow进程可用的GPU内存量,这是非常有用的。 在多GPU系统上使用单个GPU 如果您的系统中有多个GPU,则默认情况下将选择具有最低ID的GPU。
我们的实验硬件环境配置为:GPU计算型GN7|GN7.5XLARGE80(配置一颗NVIDIA T4),80内存。操作系统为 Windows Server 2019 数据数据中心版 64位 中文版。 腾讯云的GPU产品计算型GN7,使用在gpu上的效果不错,代码运行速率高,基本上各项功能都非常好,所以我觉得非常适合来做这项工作。 总之,gpu效能很不错。
这是图解系列之GPU 关注阅读更多图解 ? 要说GPU就绕不开CPU。 以前CPU要做所有的工作,但是后来发现有一类工作,它比较简单并且需要大量的重复性操作,各操作之间又没有关联性。 于是CPU就找了一堆GPU来干这些大量重复性的简单工作。 由于图形渲染任务具有高度的并行性,所以GPU一开始就是做图形渲染的工作。 ? GPU内部有数量众多的计算单元,每个计算单元内只有非常简单的控制逻辑。尽管每一个单元的计算能力不如CPU,但人多力量大呀。 CPU是顺序执行的: ? GPU是并行执行的: ? 下面我们看一下GPU的工作原理。 GPU的工作都是CPU安排的,包括图形渲染。 GPGPU其实是对GPU的一种优化,让GPU更加的具有易用性和通用型,GPU应用于AI就是GPU通用属性的一个方向,类似的方向有很多:挖矿、AI训练、HPC高性能计算等。
禁用GPU设置 # 在import tensorflow之前 import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' CPU与GPU对比 显卡:GTX 1066 GPU ? 简单测试:GPU比CPU快5秒 补充知识:tensorflow使用CPU可以跑(运行),但是使用GPU却不能用的情况 在跑的时候可以让加些选项: with tf.Session(config=tf.ConfigProto (allow_soft_placement=True, log_device_placement=True)) 其中allow_soft_placement能让tensorflow遇到无法用GPU跑的数据时 以上这篇使用Tensorflow-GPU禁用GPU设置(CPU与GPU速度对比)就是小编分享给大家的全部内容了,希望能给大家一个参考。
GPU渲染流水线,是硬件真正体现渲染概念的操作过程,也是最终将图元画到2D屏幕上的阶段。 GPU管线涵盖了渲染流程的几何阶段和光栅化阶段,但对开发者而言,只有对顶点和片段着色器有可编程控制权,其他一律不可编程。如下图: ? 简单总结GPU管线,这阶段中主要是对图元进行操作。 正因这独立性,GPU可以并行化处理每一个顶点,提高处理速度。 顶点着色器最重要的功能是执行顶点的坐标变换和逐顶点光照。 这样设计的好处是能减少一些不必要的绘制,并减少对GPU的浪费。 回到正题,片段着色器同上述的顶点着色器,只是它作用的对象是每一片段,对其进行着色贴图。 推荐阅读: GPU的工作原理 两段小视频轻松理解CPU & GPU的工作原理 GPU内存分级
目前市面上介绍GPU编程的博文很多,其中很多都是照章宣科,让人只能感受到冷冷的技术,而缺乏知识的温度。 而GPU则可以被看成一个接受CPU调度的“拥有大量计算能力”的员工。 为什么说GPU拥有大量计算能力。我们看一张NV GPU的架构图 ? 如果说cuda核心数不能代表GPU的算力。那我们再回到上图,可以发现这款GPU提供了640个Tensor核心,该核心提供了浮点运算能力。 然而GPU对应的显存带宽则比CPU对应内存高出一个数量级! ? 下节我们将结合cuda编程来讲解GPU计算相关知识。
这是个很严峻的问题,每次跑代码,内存就炸了,gpu还没开始用呢,看一些博客上是这样说的: 方法一: import os os.environ["CUDA_VISIBLE_DEVICES"] = "2"# 方法二: 卸载cpu版本的tensorflow,重新安装gpu版本的 好不容易装上的,如果可以用其他的方法,那么我还是想试一下的。 方法三: 正在探讨中,找到了再补充在这个博客中 还有一个很有意思的是,你怎么知道你的某个环境用的是cpu还是gpu: 我引用一下,原文出自https://blog.csdn.net/weixin_37251044 K40c, pci bus id: 0000:05:00.0 b: /job:localhost/replica:0/task:0/device:GPU:0 a: /job:localhost/replica:0/task:0/device:GPU:0 MatMul: /job:localhost/replica:0/task:0/device:GPU
下面聊一聊我对 GPU 容器化和 GPU 挂载的认识,以及为什么需要 GPU 热挂载。 1. GPU 容器化与 GPU 挂载 GPU 挂载很好理解,即为容器或 Pod 挂载 GPU 资源,允许容器中的应用程序使用。在容器化的趋势席卷各个领域的今天,深度学习也同样无法 “幸免”。 GPU,只需一个--gpus参数或者一个nvidia.com/gpu资源字段即可完成 GPU 资源的挂载。 当前 GPU 挂载方案的不足 当前的 GPU 容器化的方案仍然存在一点不足,无法动态调整一个已经正在运行的容器或 Pod 可用的 GPU 资源。 什么是 / 为什么需要 GPU 热挂载? GPU 热挂载即调整一个运行中容器的 GPU 资源,能够增加或删除一个运行中的容器可用的 GPU 资源而无需暂停或重启容器。
经查阅发现原来是训练模型时使用的GPU卡和加载时使用的GPU卡不一样导致的。个人感觉,因为pytorch的模型中是会记录有GPU信息的,所以有时使用不同的GPU加载时会报错。 解决方法 gpu之间的相互转换。即,将训练时的gpu卡转换为加载时的gpu卡。 torch.load(‘modelparameters.pth’, map_location={‘cuda:1′:’cuda:0’}) # gpu 1 — gpu 0 当然,你也可以直接将加载模型时使用的 gpu卡改为和训练时的一样。 但在多人使用一个服务器时,你想用的gpu卡已被使用,就需按上面方法转换gpu。
目录 前言 GPU架构 GPU处理单元 概念GPU GPU线程与存储 参考 最后 ---- 前言 之前谈了谈CUDA的环境搭建. . ---- GPU架构 GPU处理单元 ? GPU处理单元 从这张GPU概念内核图开始讲起, 会发现和CPU内核是不同的, 少了三级缓存以及分支预测等等. 复制16个上述的处理单元, 得到一个GPU. 实际肯定没有这么简单的, 所以可以说是概念GPU. ? , 一般来说, 都是异构的, CPU+GPU.
GPU 云服务器(GPU Cloud Computing,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景 GPU在我日常不怎么使用的上,但有时候又有修复视频的需求,自己的电脑没有强大的GPU在腾讯云领到一台GPU服务器那么就要试试视频修复运行的怎么样了 这次服务器是有显卡的,N卡P40,算力还行,毕竟企业级显卡嘛 在此附上Windows版驱动安装教程 GPU基础环境部署操作: https://doc.weixin.qq.com/doc/w3_AIgA4QYkACkWEoXrDAlTPqe0Lr69g GPU GRID 驱动安装: 下载 GRID 11 驱动,驱动下载链接:https://share.weiyun.com/AsMiW2iE; 执行exe文件安装 GRID 11 版本的 GPU 驱动; 桌面右键 -> NVIDIA 控制面板 -> 许可 -> 管理许可证 -> 如下图填写 License 服务器和端口号; image.png 在任务管理器就可以看到GPU了 image.png 简单看一下配置跑分,豪华的这配置啊
经过多年使用图形处理单元(GPU)来加速在层析成像,计算机视觉,气候建模,数字取证,地理空间数据库,粒子物理学,射电天文学和定位显微镜等领域的科学应用,我们注意到许多技术,研究软件工程师(RSE)可能会遇到的社会技术和非技术挑战 尽管其中一些挑战(例如,管理项目中的不同编程语言或必须处理不同的内存空间)在涉及GPU的所有软件项目中都是常见的,但其他挑战在科学软件项目中更为典型。 在本文中,我们介绍了从研究软件工程GPU应用程序中获得的挑战和经验教训。 Netherlands eScience Center, (2) Centrum Wiskunde & Informatica) 原文地址:https://arxiv.org/abs/2005.13227 十年研究软件工程 GPU应用的经验教训(CS SE).pdf
查看机器 GPU 的信息: nvidia-smi 持续更新查看: nvidia-smi -l ? 其他方式如下: import os # 使用GPU0 和 GPU1 os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1' # 通过 allow_soft_placement 参数自动将无法放在 GPU 上的操作放回 CPU gpuConfig = tf.ConfigProto(allow_soft_placement=True) # 限制一个进程使用 60% 的显存 gpuConfig.gpu_options.per_process_gpu_memory_fraction = 0.6 # 运行时需要多少再给多少 gpuConfig.gpu_options.allow_growth = True with tf.Session(config=gpuConfig)
在NVIDIA的GPU中,内存(GPU的内存)被分为了全局内存(Global memory)、本地内存(Local memory)、共享内存(Shared memory)、寄存器内存(Register 这六类内存都是分布在在RAM存储芯片或者GPU芯片上,他们物理上所在的位置,决定了他们的速度、大小以及访问规则。 如下图,整张显卡PCB电路板上的芯片主要可以分为三类: 1. GPU芯片,也是整张显卡的核心,负责执行计算任务。 2. DDR3存储芯片,其在显卡中相对与GPU的地位相当于电脑中内存条对于CPU,只是放在了显卡上专供GPU使用。 3. 显卡的内存可以分为GPU片内(On-Chip)存储体和位于DDR3存储芯片中的存储体。 推荐阅读: GPU的工作原理 两段小视频轻松理解CPU & GPU的工作原理
腾讯GPU 云服务器是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。
扫码关注腾讯云开发者
领取腾讯云代金券