首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

EEG信号处理与分析常用工具包介绍

在脑科学领域,EEG技术可以说是研究大脑的最重要的技术手段之一,而对于采集得到的EEG信号需要经过较为复杂的多个步骤的分析和处理才能够获得我们所需要的最终结果。EEG信号的分析和处理可能会涉及以下一个或多个方面:信号的预处理(预处理也需要多个步骤)、ERP时域分析、时频分析、信号的功率谱计算、功能连接、溯源分析等等。上述涉及到的EEG信号分析方法对于有编程基础和学过“数字信号处理”相关课程的人来说或许会稍感轻松,但是对于没有学过 “数字信号处理”相关课程的人来说可能就会困难重重。幸运的是,目前国内外研究者开发出了多款EEG信号处理和分析的开源工具包,供大家免费下载使用。这些开源的EEG工具包促进了脑科学领域的蓬勃发展,也使得“技术小白们”经过简单的学习就可以运用那些高大上的EEG分析技术。这里,笔者就对这些常用的EEG信号分析与处理工具包进行简单的介绍。

01

如何用ICA去除脑电信号中的干扰?

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》   独立成分分析(ICA)已经成为脑电信号预处理,特别是去除干扰信号过程中一个标准流程。ICA是一种盲源算法,其通过一定的方法把信号分解成相互独立的多个源信号。尽管ICA算法为研究者去除脑电信号中的干扰源提供了便利,但是在具体运用时带有一定的主观性,因此需要一定的经验才能够鉴别出干扰成分。当然,目前也有一些自动化鉴别干扰成分插件,但是这些插件也只能提供一个参考而已,最后还需要自己的判定。这里,笔者总结一些典型噪声成分的特点,希望对各位朋友有所帮助。    EEGlab中植入了最常用的ICA算法,建议采用EEGlab运行ICA。ICA跑完之后,可以画出每个成分的拓扑图、功率谱曲线等,我们可以依据这些信息鉴别出噪声成分,进而把这些成分去掉。 1.眨眼   眨眼引起的干扰最主要特点是:独立成分的拓扑图主要分布于前端眼部电极,如图1所示。此外,该成分的功率谱曲线没有明显的peak。

00

kali linux 密码嗅探工具 Dsniff 详解

Dsniff 是一个著名的网络嗅探工具包。其开发者 Dug Song 早在1999年12月,以密歇根大学 CITI 研究室(Center for Information Technology Integration)的研究成果为基础,开发了这个 后来具有很大影响力的网络安全工具包。Dug Song 开发 Dsniff 的本意是揭示网络通信的不 安全性,借助这个工具包,网络管理员可以对自己的网络进行审计,也包括渗透测试。但万 事总有其两面 性,Dsniff 所带来的负面作用也是“巨大”的,首先它是可以自由获取的,任 何拥有这个工具包的人都可能做“非正当”的事,其次,Dsniff 里面的某 些工具,充分揭示 了一些安全协议的“不安全性”,例如针对 SSH1和 SSL 的 MITM(Man-In-The-Middle)攻击 工具—SSHmitm 和 Webmitm。SSH1和 SSL 都是建立网络通信加密通道的机制,向来被认 为是很安全的,但人们在具体使用时,往往因为方便性上的考虑而忽视了某些环 节,造成 实事上的不安全。所以说,最大的不安全性,往往并不在于对安全的一无所知,而在于过于 相信自己的安全。

01

图论在静息态和动态脑连接评估中的应用:构建脑网络的方法

人脑的连接是复杂的,包括功能连接和结构连接。基于图论的分析已经成为分析脑成像数据的一种强大而流行的方法,这主要是因为它有可能定量地阐明网络、结构和功能的静态结构、随时间变化的动态行为组织以及与疾病相关的脑变化。创建脑网络的第一步是定义连接它们的节点和连边,本文回顾了许多定义脑节点的方法,包括固定的节点和数据驱动的节点。扩展了大多数静息态/单模态脑连接研究的视角,阐述了构建动态和多模态脑网络的先进方法以及这些方法的性能。展示了来自健康对照组和精神疾病患者的模拟的和真实数据的结果。最后,概述了这些不同技术的优势和挑战。通过对近年来基于图论的脑成像数据分析研究的总结和考察,为探索复杂脑网络提供了新的有力工具。本文发表在Proceedings of the IEEE杂志。

02

Cerebral Cortex:大尺度结构协变网络预测中老年成人的脑年龄

一、背景   老化是一个复杂而且动态的过程,伴随着不断累积的年龄效应,影响了人类的多个器官。这些器官的衰退引起了多种行为和临床的表现,比如心血管疾病,认知衰退等。虽然这些临床症状在老年时期才会显现,但是相应的变化在老年之前的很多年前就会开始发挥作用。越来越多的研究者开始寻找能够提前预示着老化的一些生物标记物,来防范于未然。   老化的一个显著的变化是大脑组织的改变,这些改变已用MRI研究发现。此前,很多研究已经发现从大脑灰质体积,白质完整性,皮层厚度等很多方面发与于老化有关系。并且,这些正常的衰老变化在神经精神疾病和神经退行性疾病中会发生改变。进而提出了大脑加速化衰老的概念,并且假设这种衰老化的快慢能够用来区分正常人和患者。借助机器学习,研究人员不仅发现人脑的灰质体积和白质完整性能够预测人的生物学年龄,并且发现阿尔兹海默症,轻度认知障碍,精神分裂症等患者存在脑加速衰老的表现。    近年来的研究发现,大脑不同区域之间共同作用形成了不同的大脑子网络。其中,结构协变网络就是其中一种研究大脑大尺度协作关系的研究手段。很多研究指出结构协变网络能够反映跨脑区的遗传发育和同步成熟。在此基础之上,很多研究也发现利用结构协变网络研究神经退行性疾病和神经精神病网络级上异常的可能性。近期,发表在《Cerebral Cortex》杂志上的一篇研究论文结合结构协变网络和机器学习来构建模型预测脑年龄,并且该模型能够检测出相关疾病的脑加速化衰老现象。 二、材料方法 1.被试   研究包含了中老年精神疾病和神经退行性疾病患者,年龄范围在50-90岁。正常对照的总人数是909人,年龄范围在50-89岁,用来构建模型预测脑年龄。 2.数据采集   采集了所有被试的T1加权图像,并且计算了每个被试的灰质体积图。 3.分析流程   图1表示了文章的具体分析流程。首先计算完每个被试的灰质体积图。将所有的被试串联在一起,用ICA的方法划分团块。这里由于ICA需要事先确定主成分个数,所以设定一个区间。在训练集内,用空间回归的方法计算每个网络整合系数(beta系数)。这些网络的整合系数被进一步当成特征来预测大脑的年龄。在确定了最优的成分数之后,训练集得到的ICA的成分图被当作先验模板来计算测试集和临床疾病数据的网络整合系数。然后,将测试集和临床疾病数据的网络整合系数送入训练好的模型进行预测。

01

Microsoft Virtual PC_电脑怎么设置虚拟显示器

Virtual Display Manager 是一款非常实用的Windows虚拟显示器软件,通过附加虚拟显示器的便利性来补充您现有的单显示器或多显示器系统,这些显示器可以使用现有硬件共享现有的物理屏幕,适用于任意数量的物理显示器,并且可针对每个物理监视器进行单独配置,单个物理显示器最多可拓展分成16个独立的Windows虚拟显示器,虚拟显示器的大小可以按用户需求均匀或单独缩放,即支持均匀分布的布局和不对称配置,可将用户工作效率最高提升至百分之五十左右,显示器硬件成本和空间占用以及功耗也会随之下降,大家现在应该都知道虚拟显示器是干什么的了吧,威航软件园提供最新版本的Windows虚拟显示器软件下载。

02

2016-ICLR-DENSITY MODELING OF IMAGES USING A GENERALIZED NORMALIZATION TRANSFORMATION

这篇文章[1]提出了一个参数化的非线性变换(GDN, Generalized Divisive Normalization),用来高斯化图像数据(高斯化图像数据有许多好处,比如方便压缩)。整个非线性变换的架构为:数据首先经过线性变换,然后通过合并的活动度量对每个分量进行归一化(这个活动度量是对整流和取幂分量的加权和一个常数进行取幂计算)。作者利用负熵度量对整个非线性变换进行优化。优化后的变换高斯化数据的能力得到很大提升,并且利用该变换得到的输出分量之间的互信息要远小于其它变换(比如 ICA 和径向高斯化)。整个非线性变换是可微的,同时也可以有效地逆转,从而得到其对应的逆变换,二者一组合就得到了一个端到端的图像密度模型。在这篇文章中,作者展示了这个图像密度模型处理图像数据的能力(比如利用该模型作为先验概率密度来移除图像噪声)。此外,这个非线性变换及其逆变换都是可以级连的,每一层都使用同样的高斯化目标函数,因此提供了一种用于优化神经网络的无监督方法。

04
领券