学习
实践
活动
专区
工具
TVP
写文章
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Java-矩阵乘法

    -----Winston Leonard Spencer Churchill 文末附上详细代码 思路: 矩阵乘法的前提是:前一矩阵的行数 == 后一矩阵的列数(rows == cols) 在满足前提的情况下 :前一矩阵的第一行 与 第二个矩阵的第一列 逐个相乘。 将乘积求和 作为 结果矩阵的第一个元素 类推刻得到:结果矩阵的 第 [row][col] 个元素 = 前一矩阵的第 row 行 与 后一矩阵的 col列上的元素 逐一相乘 后的乘积之和 代码及解析: 一 、算法剖析: 1.设置两个for循环用来控制结果(输出)矩阵的 待赋值元素位置 (即 matrix[i][j] ) 2.在这两个循环环中再嵌套上一个循环 这个循环起到关键作用 它用来控制 前一矩阵第 i 行元素的列数 以及 后一矩阵 第 j 列的行数 二、算法代码: ​/* * 计算两个矩阵相乘的方法 */ public Matrix mutiply(Matrix m){ Matrix result

    31220

    Strassen矩阵乘法问题(Java

    Strassen矩阵乘法问题(Java) 1、前置介绍 2、代码实现 3、复杂度分析 4、参考资料 ---- ---- 1、前置介绍 矩阵乘法是线性代数中最常见的问题之一 ,它在数值计算中有广泛的应用 设A和B是2个nXn矩阵, 它们的乘积AB同样是一个nXn矩阵。 因此,得到矩阵C的n2 个元素所需的计算时间为 O(n3) 。 使用与上例类似的技术,将矩阵A,B和C中每一矩阵都分块成4个大小相等的子矩阵。由此可将方程C=AB重写为: 2个n阶方阵的乘积转换为7个n/2 阶方阵的乘积和18个n/2阶方阵的加减法。 : * 例子:将 4 * 4 的矩阵,变为 2 * 2 的矩阵, * 那么原矩阵左上、右上、左下、右下的四个元素分别归为新矩阵

    8220

    模型矩阵、视图矩阵、投影矩阵

    总而言之,模型视图投影矩阵=投影矩阵×视图矩阵×模型矩阵,模型矩阵将顶点从局部坐标系转化到世界坐标系中,视图矩阵将顶点从世界坐标系转化到视图坐标系下,而投影矩阵将顶点从视图坐标系转化到规范立方体中。 ;如果局部坐标系还要继续变换,只要将新的变换矩阵按照顺序左乘这个矩阵,得到的新矩阵能够表示之前所有变换效果的叠加,这个矩阵称为「模型矩阵」。 这个表示整个世界变换的矩阵又称为「视图矩阵」,因为他们经常一起工作,所以将视图矩阵乘以模型矩阵得到的矩阵称为「模型视图矩阵」。 考虑一辆行驶中的汽车的轮胎,其模型视图矩阵是局部模型矩阵(描述轮胎的旋转)左乘汽车的模型矩阵(描述汽车的行驶)再左乘视图矩阵得到的。 投影矩阵 投影矩阵将视图坐标系中的顶点转化到平面上。 最后,根据投影矩阵×视图矩阵×模型矩阵求出模型视图投影矩阵,顶点坐标乘以该矩阵就直接获得其在规范立方体中的坐标了。这个矩阵通常作为一个整体出现在着色器中。

    24920

    矩阵分析(十一)酉矩阵、正交矩阵

    矩阵 若n阶复矩阵A满足 A^HA=AA^H=E 则称A是酉矩阵,记为A\in U^{n\times n} 设A\in C^{n\times n},则A是酉矩阵的充要条件是A的n个列(或行)向量是标准正交向量组 酉矩阵的性质 A^{-1}=A^H\in U^{n \times n} \mid \det A\mid=1 A^T\in U^{n\times n} AB, BA\in U^{n\times n} 酉矩阵的特征值的模为 1 标准正交基到标准正交基的过渡矩阵是酉矩阵 酉变换 设V是n维酉空间,\mathscr{A}是V的线性变换,若\forall \alpha, \beta \in V都有 (\mathscr{A}(\alpha ), \mathscr{A}(\beta))=(\alpha,\beta) ---- 正交矩阵 若n阶实矩阵A满足 A^TA=A^A=E 则称A是正交矩阵,记为A\in E^{n\times n} 设A (或正交矩阵) ---- 满秩矩阵的QR分解 若n阶实矩阵A\in \mathbb{C}^{n\times n}满秩,且 A = [\alpha_1,...

    3.1K30

    hesse矩阵和jacobi矩阵_安索夫矩阵和波士顿矩阵区别Jacobian矩阵和Hessian矩阵

    ,海森矩阵和牛顿法的介绍,非常的简单易懂,并且有Hessian矩阵在牛顿法上的应用。 Jacobian矩阵和Hessian矩阵 发表于 2012 年 8 月 8 日 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 雅可比矩阵 雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近. 因此, 雅可比矩阵类似于多元函数的导数. 雅可比行列式 如果m = n, 那么FF是从n维空间到n维空间的函数, 且它的雅可比矩阵是一个方块矩阵. 于是我们可以取它的行列式, 称为雅可比行列式. 海森Hessian矩阵 在数学中, 海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, 此函数如下: 2), 最优化 在最优化的问题中,

    15320

    矩阵分析(十二)正规矩阵、Hermite矩阵

    $A$酉相似于一个上(下)三角矩阵 ---- 例1 已知$A = \begin{bmatrix}0&3&3\\-1&8&6\\2&-14&-10\end{bmatrix}$,求酉矩阵$U$,使得$U^HAU 定理:$\exists U\in U^{n\times n}$,使得$U^{-1}AU$为对角矩阵的充分必要条件为$A^HA=AA^H$ 定义:如果矩阵$A$满足$A^HA=AA^H$,则称其为正规矩阵 ---- Hermite矩阵 定义:$A\in \mathbb{C}^{n\times n}$,若$A^H=A$,则称$A$为Hermite矩阵 定理:Hermite矩阵是正规矩阵,Hermite矩阵的特征值是实数 }{x^Hx} $$ 为实数,称$R(x)$为矩阵$A$的Rayleigh商 定理:由于Hermite矩阵的特征值全部为实数,不妨排列成 $$ \lambda_1 ≥ \lambda_2 ≥ ···≥ ,并求酉矩阵$U$,使得$U^HAU$为对角矩阵 解:$A^H=\begin{bmatrix}\frac{1}{3}&-\frac{1}{3\sqrt{2}}&-\frac{1}{\sqrt{6}}\\

    74950

    伴随矩阵求逆矩阵(已知A的伴随矩阵求A的逆矩阵)

    在之前的文章《线性代数之矩阵》中已经介绍了一些关于矩阵的基本概念,本篇文章主要就求解逆矩阵进行进一步总结。 =0,我们就称A为非奇异矩阵。奇异矩阵是没有逆矩阵的。 最后我想说的是我本来想求逆矩阵的,不凑巧找了个奇异矩阵,饶恕我吧:( 伴随矩阵 Adjugate Matrix 伴随矩阵是将matrix of cofactors进行转置(transpose)之后得到的矩阵 ,因此没有逆矩阵,但如果是非奇异矩阵,我们则可以按照之前的公式求得逆矩阵。 逆矩阵计算 初等变换 求解逆矩阵除了上面的方法外,还可以用更加直观的方法进行求解,这就是初等变换,其原理就是根据A乘以A的逆等于单位矩阵I这个原理,感兴趣的同学可以看参考链接中的视频。

    47920

    矩阵分析(十三)矩阵分解

    },满足 A = BC \mathbb{C}_r表示矩阵的秩为r 实际上上述定理用文字描述就是,一个亏秩的矩阵可以分解成一个列满秩与行满秩矩阵的乘积 证明:因为rank(A)=r,所以一定可以找到与A相似的一个矩阵 ,\begin{bmatrix}E_r\\0\end{bmatrix}是一个列满秩矩阵,所以B=P^{-1}\begin{bmatrix}E_r\\0\end{bmatrix}仍是一个列满秩矩阵;同理, C=\begin{bmatrix}E_r&0\end{bmatrix}Q^{-1} 矩阵满秩分解的计算 如何在给定矩阵A的情况下,求出矩阵B,C呢? ,\alpha_n的一个极大线性无关组,因此B就是矩阵A列向量组的一个极大线性无关组,C就是用该线性无关组去表示A时的系数 ---- 例1 求矩阵A=\begin{bmatrix}1&4&-1&5&6\ LU分解 LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积,以四阶矩阵为例 L = \begin{bmatrix}1&0&0&0

    64410

    扫码关注腾讯云开发者

    领取腾讯云代金券