首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

嵌粉须知:看看嵌入式系统是如何驱动物联网发展的

物联网的发展以及火热,相信人人都有所了解,那么在嵌入式系统是如何驱动物联网发展的,往下看。。。。。 物联网技术并不是一个单独的技术,而是多种已有技术的融合:如处理器技术、互联网技术、嵌入式系统技术、传感器网络技术、通信技术、RFID技术等。而且,物联网是新一代信息技术的重要组成部分,是互联网与嵌入式系统发展到高级阶段的融合,作为物联网重要技术组成的嵌入式系统,正成为物联网融合发展的巨大驱动力。 首先我们以RFID为例来看看无线传感器网络里面的嵌入式技术。感知层是物联网中的重要的感知节点,它融合了传感技术、嵌

08

zigbee物联网开发平台(工业物联网)

1.概述 鉴于ZigBee技术适合用于数据采集系统的的特点, 提出了基于ZigBee的数据采集系统的设计方案, 着重探讨ZigBee节点的硬件设计及其组网设计. 并详细讨论了基于CC2530芯片的数据采集节点的硬件设计方案, 组网设计中的协调器建立网络、节点加入网络的设计方法, 以及数据采集系统的软件设计方法. 最后通过采集ZigBee网络传感器数据的实验, 证明该方案能取得良好的通信效果. 1.1 系统描述 利用ZigBee传感器网络、网关、服务器实现简单的数据采集系统。项目中把使用了三种传感器,分别是:温湿度传感器,烟雾传感器,光敏传感器。终端节点传感器采集到数据之后发送给协调器之后,由协调器通过串口将数据发至给电脑客户端,最后电脑客户端将串口发送上来的传感器数据使用套接字封装成http格式后通过post方式发送到服务端,并且存储到数据库中。客户端通过访问服务器,获取数据展示出来。 1.2 系统结构介绍

01

自动驾驶汽车传感器融合系统及多传感器数据融合算法浅析

“自动泊车、公路巡航控制和自动紧急制动等自动驾驶汽车功能在很大程度上是依靠传感器来实现的。重要的不仅仅是传感器的数量或种类,它们的使用方式也同样重要。目前,大多数路面上行驶车辆内的ADAS都是独立工作的,这意味着它们彼此之间几乎不交换信息。只有把多个传感器信息融合起来,才是实现自动驾驶的关键。” 现在路面上的很多汽车,甚至是展厅内的很多新车,内部都配备有基于摄像头、雷达、超声波或LIDAR等不同传感器的先进驾驶员辅助系统(ADAS)。 这些系统的数量将会随着新法案的通过而不断增加,例如在美国,就有强制要求安

08

超越BEVFusion!DifFUSER:扩散模型杀入自动驾驶多任务(BEV分割+检测双SOTA)

目前,随着自动驾驶技术的越发成熟以及自动驾驶感知任务需求的日益增多,工业界和学术界非常希望一个理想的感知算法模型,可以同时完成如3D目标检测以及基于BEV空间的语义分割在内的多个感知任务。对于一辆能够实现自动驾驶功能的车辆而言,其通常会配备环视相机传感器、激光雷达传感器以及毫米波雷达传感器来采集不同模态的数据信息,从而充分利用不同模态数据之间的互补优势,比如三维的点云数据可以为3D目标检测任务提供算法模型必要的几何数据和深度信息;2D的图像数据可以为基于BEV空间的语义分割任务提供至关重要的色彩和语义纹理信息,通过将不同模态数据的有效结果,使得部署在车上的多模态感知算法模型输出更加鲁棒和准确的空间感知结果。

01

【Profinet专栏】关于PROFINET与I/O总线集成应用的思考

【0. 前言】 尽管在各种智能设备的协同工作下,机器正在变得越来越聪明,但是仅有聪慧的头脑恐怕还远远不够。我们还需要灵敏而丰富的感知、敏捷而精准的执行,也许才能真正将机器的所思所想,落实为对人类有益的实际生产成果。由此可见,在探索工业4.0 智能制造的自动化项目实践中,我们将会遇到关于传感器与执行器在产品与技术应用方面越来越大的挑战。 【1. 来自执行器/传感器层的挑战】 经典的企业自动化网络模型,自上到下包含5个层级:计划编制层(Planning Level)、控制层(Control Level)、单元层(Cell Level)、现场层(Field Level)、执行器/传感器层(Actuator/Sensor Level)。其中,执行器/传感器层需要与现场层的控制器连接,因此本质上是属于现场层的一部分。之前关于 PROFINET的一些思考,主要聚焦在现场层的控制器与 IO 设备上,考虑了一些提高通讯网络稳定与快速性能以及智能化的问题,而现在有必要来看看一些 PROFINET 在执行器/传感器层的应用问题。 挑战1:安装数量越来越多,安装位置越来越分散。想要使机器具有丰富的感知,机器的每个部位上都有传感器覆盖的必要;类似的,想要实现丰富的机械动作输出,执行器也有必要如此覆盖在机器的各个部位;由此产生了大量且分散的IO 信号需要处理。对于收集处理大量的 IO 信号,一个大容量的且功能集成较多的 IO 设备也许就可以解决问题。但是每个PROFINET 控制器带动 PROFINET设备的能力(设备数量)都有各自的上限(就像一个班级中不可能有无限多的学生)。由此我们可能在处理过多分散的 IO信号时,发现仅靠一个控制器网络内的设备,还不足以覆盖这么多的分散区域。 挑战2:功能要求越来越高,接线要求越来越简洁。为了实现机器感知的灵敏、动作的敏捷,执行器/传感器层对于自身发送接收 IO信号的更新时间要求是很高的,甚至会低于控制器的循环扫描周期。而目前执行器/传感器的产品种类与功能也越来越丰富,电气控制接口形状遵循各自不同的协议规范,电气信号格式也多种多样,例如电压型电流型模拟量、数字开关量等等。这么多分散的不同规格的信号线缆接到IO 设备上,需要 IO 设备本身集成各种类型的 IO模块,不仅增加了电气调试编程的复杂度,而且增加了电气接线施工与故障诊断的复杂度。终端用户往往也希望对于各种各样的执行器/传感器层 IO信号线,最好也能类似 PROFINET那样一网到底,只需一种通讯线,就搞定所有类型的执行器/传感器产品方案的电气接线与控制工作。 由此可见,如果有一种擅长于处理执行器/传感器层 IO 信号的总线网络,作为 PROFINET 网络的延伸,与 PROFINET集成在一起,共同管理整个现场层的通讯网络,就显得越来越有意义且有必要了。 【2. 关于 PROFINET 与 I/O 总线集成应用的方案】 如下图所示,随着工业以太网技术的普及与相关产品的发展,从传统的手动工位到整个自动化工厂,我们都可以用 PROFINET通讯方案将它们连接在一起。而从应用复杂度的角度来看,对于数据结构相对简单,数量众多布局分散的执行器/传感器信号处理来说,更轻量级的I/O 总线协议有时候显得性价比更高。

03
领券