(4, '河南', '郑州', 113.629, 34.744), (5, '安徽省', '合肥', 117.170, 31.520); 查询方式 (以内蒙古自治区呼和浩特市为计算中心
前言 主要记录一些关于坐标和线段的计算方法。因为经常会碰见,需要在平面上,计算坐标点。 例如两个坐标点之间的距离,两个线段是否平行,两个不相交的线段的交点。 由于程序中的坐标原点,都是左上角开始的。...这里,主要介绍如何使用勾股定理计算坐标距离,斜率计算线段交点等。 2. 根据两个坐标点,计算距离 平面中,两点之间,直线最短。而在已知两个坐标点的x轴和y轴的情况下。...我们可以通过勾股定理,来计算两个坐标点的距离。 因为,两个坐标点之间x轴的距离和y轴的距离可以看做三角形的两条直角边。斜边就是我们要计算的距离了。...两个x轴坐标相减,得到的是在x轴上的距离。这个值可能为正,也可能为负。但无所谓,因为进行平方之后。只会是正数。 同理,Y轴也是一样的。所以我们计算时不用管哪个坐标点是前还是后。...那么还可以这么计算么? 结论当然是可以了。 用上面的代码举例子,如果两个坐标点的Y轴相同。那么它们的距离实际上就是X轴的距离。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内...
给定一个 N 行 M 列的 01 矩阵 A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为: dist(A[i][j],A[k][l])=|i−k|+|j−l| 输出一个 N 行 M 列的整数矩阵
计算手势在手机屏幕上滑动时,手势滑动的距离,代码如下: function wetherScroll(){ var startX = startY = endX =endY =0; var body=...=Math.abs(distanceY)){ //在滑动的距离超过屏幕高度的20%时,做某种操作 if(Math.abs(distanceY)>clientHeight0.2){ //向下滑实行函数
city_position[:,1] # 存放路线的纵坐标 # print(point_x) # print(point_y) # [ 1 6 8 7 49 12] # [18 23 64 49 48 36] 依次计算路线上点之间的距离...# 计算路线的距离 total_distance=np.sum(np.sqrt(np.square(np.diff(point_x)) + np.square(np.diff(point_y))))
效果可以看本博客的评论框 [collapse title="特效JS代码"] (function webpackUniversalModuleDefinition(a,b){if(typeof exports...;POWERMODE.shake=false;document.body.addEventListener("input",POWERMODE); [/collapse] 将其上面代码复制进一个新建的js...JS文件路径)"> 博主只在目前使用的模板测试成功使用,其他模板自测。
题目描述 给出平面上两个点的坐标(x1,y1),(x2,y2),求两点之间的曼哈顿距离。曼哈顿距离=|x1-x2|+|y1-y2|。 输入 一行四个空格隔开的实数,分别表示x1,y1,x2,y2。...输出 输出一个实数表示曼哈顿距离,保留三位小数。 样例输入 输出一个实数表示曼哈顿距离,保留三位小数。
采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量做一个总结。...==== 1、欧式距离(Euclidean Distance) 欧式距离是最易于理解的一种距离计算方法,源自欧式空间中两点间的距离公式。...两个n维向量a与b间的欧式距离: d=(a−b)T(a−b)−−−−−−−−−−−−√2 d = \sqrt[2]{(a-b)^T(a-b)} 用R语言计算距离主要是dist函数。...若X是一个M×N的矩阵,则dist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。...2.693503;第二行与第三行的距离为6.113250;第一行与第三行的距离为5.548077 2、曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。
欧式距离计算 在二维空间下欧式距离的计算公式 欧式距离计算实现 用Python实现欧式距离计算时,可以使用numpy.linalg.norm()函数来计算欧式距离,示例代码如下: import numpy...在计算欧式距离时,可以用来计算向量之间的差异。...(norm_x) 欧式距离的相似度计算应用 欧式距离在聚类分析、机器学习、推荐系统和图像识别等领域中的相似度计算有应用。...如在聚类分析中,欧式距离可以用来衡量数据点之间的相似度,依据欧式距离将数据点分组成簇。 又如在机器学习中,欧式距离被用来计算特征向量之间的相似度。...既然本文章说的是欧式距离在相似度计算的应用,那么我们肯定就可以用欧式距离来衡量每对学生之间的成绩差异,从而找出成绩较为接近的学生。
一般KL距离用来衡量同意事件中,两种概率分布的相似程度,这个值越小,则相似程度越高。 ? 计算的实例: 我们抛两枚硬币,真实的概率为A,但是我们只能通过观察得到B和C,如下所示。...A(0) = 1/2, A(1) = 1/2; B(0) = 1/4, A(1) = 3/4; C(0) = 1/8, C(1) = 7/8; 进一步计算A与B和C的KL距离: D(A||B) =...需要注意的是,KL距离虽然叫做距离,但是并不是真正的距离,不符合距离的对称性和三角不等式。 2....Jensen-Shannon divergence JS散度是基于KL距离提出的改进,取值在0到1之间: ?...JS散度是对称的并且取值在0-1之间,另外,KL与JSD都存在一个问题,在很极端的情况下,KL值没有意义,JSD会趋于一个常数,这样在算法中梯度变为了0. 欢迎关注!
使用原生JS,实现鼠标点击爱心效果 !!! 引言: 在很多时候我们都需要实现鼠标点击出现图案或者文字这样的效果,对于用户而言,这样的体验是很极致的。其实实现起来也很简单,下面一起来学习一下吧。...这样的效果很常用,在很多网页博客中都有使用 实现思路 首先我们需要获取到当前鼠标点击的位置 需要在当前位置生成一个标签 需要给标签添加随机的自定义内容 随机的文本颜色 添加文本的淡出效果 清除淡出的标签...文本上升效果 let i = 0 setInterval(() => { _this.style.top = this.y - 20 - i + 'px' i++ }, 10); 由于原生js...文字逐渐变淡效果 @keyframes remove { 100% { opacity: 0; } } 逐渐变淡的效果是通过css3动画来实现的很简单,动画是通过js来给元素绑定的...鼠标点击实例化标签,并在点击位置生成 body.addEventListener('click', function (e) { let x = e.pageX; let y = e.pageY
如何利用JS点击该坐标?
elem.style.opacity = (150 - increase) / 120; }, 8); }, 70); $body.appendChild($elem); }; }; 在main.js.../static/js/mouseClick' Vue.use(mouse)
节点距离计算节点距离计算是指计算集群中任意两个节点之间的距离。在Hadoop中,距离通常是基于网络拓扑计算的。节点之间的距离可以用不同的度量方式进行计算,例如网络延迟、带宽和吞吐量等。...节点距离的计算方式通常是基于网络拓扑树结构进行计算。Hadoop中定义了一组规则来计算节点之间的距离。首先,节点之间的距离根据它们所在的机架来计算。如果两个节点在同一机架上,则它们之间的距离为1。...计算节点距离的代码示例下面是一个Java代码示例,它演示了如何使用Hadoop API计算两个节点之间的距离。...接着,我们根据输入的源节点和目标节点获取它们对应的DatanodeDescriptor对象,并使用Hadoop中定义的距离计算规则计算它们之间的距离。...最后,我们输出计算结果,告诉用户源节点和目标节点之间的距离。
在前面文章中,我们交代了计算平台相关的一些基本概念以及为什么以GPU为代表的专门计算平台能够取代CPU成为大规模并行计算的主要力量。...在接下来的文章中,我们会近距离从软硬件协同角度讨论GPU计算如何开展。跟先前的文章类似,笔者会采用自上而下,从抽象到具体的方式来论述。...这种远超CPU的计算吞吐和内存带宽使得GPU不只是在图形领域独领风骚,也开始涉足其它非图形并行计算应用。...2006年,Nvidia破天荒地推出CUDA,作为GPU通用计算的软件平台和编程模型,它将GPU视为一个数据并行计算的设备,可以对所进行的计算分配和管理。...有了以上一些改进和其他措施,终于GPU作为通用计算平台慢慢脱离原始阶段,开始成熟起来,成为大规模并行计算市场的主力军。
汉明距离,又称编辑距离,是一种衡量两个等长字符串之间的不同之处的度量方法,它在信息论和计算机科学领域中有着广泛的应用。...汉明距离的概念也被应用于DNA序列分析、图像处理、语音识别等领域。 汉明距离的原理及计算方式 汉明距离的计算方式很简单,它是通过对比两个等长字符串对应位置上的字符来计算的。...在计算汉明距离时,我们的目标是计算两个字符串对应位不同的字符个数,因此可以使用异或运算。 异或运算的规则是相同为0,不同为1。...我们可以计算c = a XOR b,再去统计c中出现1的个数和,这个就是a和b的汉明距离。...在通信领域,汉明距离被用来检测和纠正传输中出现的错误。 在编码理论中,汉明距离被用来评估纠错码的性能。 此外,汉明距离还被用于模式识别、数据挖掘、文本相似度计算等方面。
多目标优化拥挤距离计算 拥挤距离主要是维持种群中个体的多样性。具体而言,一般来说是指种群按照支配关系[1]进行非支配排序[2]后,单个 Rank 层中个体的密集程度。...并且这两个极值点的拥挤距离都被设置为 inf 即无穷大。因此注意,一个层中可能有多个具有 inf 的点,即如果层中有多个点在至少一个目标上相等,并且最大或最小,那么这些点的拥挤距离都是无穷大!!...~或者在某些算法早期可能出现这种情况 在这个目标上计算每个个体最相邻个体之间的距离,即 i-1 和 i+1 的目标值的差。并使用 max 和 min 对次值进行归一化。...遍历目标,将目标上已经归一化的拥挤距离相加。...进入下一层 front 前沿 拥挤距离越大越好,最后按照拥挤距离重新排序各层,进而排序种群 matlab function CrowdDis = CrowdingDistance(PopObj) % Calculate
题目 给定两个被元组(22,1,42,10)和(20,0,36,8)表示的对象 (a)计算这两个对象之间的欧几里得距离; (b)计算这两个对象之间的曼哈顿距离; (c)使用q=3,计算这两个对象之间的闵可夫斯基距离...(d)计算着两个对象之间的上确界距离 创建对象 a = (22, 1, 42, 10) b = (20, 0, 36, 8) 欧氏距离 import numpy as np def euclidean...return np.sqrt(sum((x[i] - y[i]) ** 2 for i in range(len(x)))) euclidean(a, b) 6.708203932499369 曼哈顿距离...manhattan(x, y): return sum(np.abs(x[i] - y[i]) for i in range(len(x))) manhattan(a, b) 11 闵可夫斯基距离...np.abs(x[i] - y[i]) ** p for i in range(len(x))) ** (1 / p) minkowski(a, b, 3) 6.153449493663682 上确界距离
领取专属 10元无门槛券
手把手带您无忧上云