首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

协方差矩阵-在离散中求“聚合”

方差是均值之上的产物,然后协方差又比方差更近一步,然后带个矩阵的话,可以说明很多变量的关系。 协方差(Covariance)是用于衡量两个随机变量之间线性关系的强度和方向。...协方差矩阵是一个方阵,它描述了多个随机变量之间的协方差关系。 协方差矩阵想象成一个弹簧系统。如果两个变量的协方差很大,那么它们就像两个紧密连接的弹簧,当一个弹簧伸展时,另一个弹簧也会跟着伸展。...简单来说,它可以告诉我们: 各个变量的方差: 协方差矩阵对角线上的元素就是各个变量的方差,反映了每个变量自身数据的离散程度。...协方差矩阵的数学表示,假设我们有n个随机变量X1, X2, ..., Xn,它们的协方差矩阵C可以表示为。 C = [cov(X1, X1) cov(X1, X2) ......cov(Xn, Xn)] 其中,cov(Xi, Xj)表示随机变量Xi和Xj的协方差。协方差矩阵是一个对称矩阵,即cov(Xi, Xj) = cov(Xj, Xi)。

6310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    学习Julia矩阵操作与保持年轻的秘诀

    自语: 话说Julia是一个神奇的语言,语法简单,速度贼快,是吹牛装X的不二神器。记得一个物理学家说过,那些旧理论之所以消失,不是因为人们改变了看法,而是持那种看法的人死光了。...为了证明自己还永远年轻,就用一些时髦的词汇,看bilibili,玩QQ空间,听《两只老虎爱跳舞》,学习Julia。。。...对于嘲笑我装嫩的年轻人,我引用王朔的话:“让我欣慰的是:你也不会年轻很久了” 加油吧,骚年,还在朋友圈打卡R和Python么,试试Julia吧!...1.1 矩阵的生成 生成一个4行4列的矩阵, 这里使用1~16数字....注意, 这里生成矩阵时, 需要首先定义一个空的数组, 然后再进行填充. mat = Array(Int32,4,4) 4×4 Array{Int32,2}: 125804192 256236432

    71010

    Julia简易教程——1_julia中的整数和浮点数

    以下是julia 中常见的数字类型: 整数类型 类型 位数 最小的价值 最大的价值 Int8 8 -2 ^ 7 2 ^ 7 - 1 UInt8 8 0 2 ^ 8 - 1 Int16 16 -2 ^ 15...> 1 1 julia > 1234 1234 整数文字的默认类型取决于目标系统是32位架构还是64位架构: # 32位操作系统 julia > typeof(1) Int32 # 64位操作系统...# 64位操作系统 julia > Int Int64 julia > UInt UInt64 julia 支持二进制和八进制、16进制的输入值 julia > 0x1 0x01 julia > typeof...ans指的是紧邻的上一条指令的输出结果 同样,既然有最大值以及最小值,即存在溢出的问题,从而会导致环绕行为,如例: julia > typemax(Int64) 9223372036854775807...中浮点数常见的例子 julia > 1.0 1.0 julia > 1. 1.0 julia > 0.5 0.5 julia > .5 0.5 julia > -1.23 -1.23 julia

    1.4K10

    Golang中的数组和切片

    数组 基础知识 数组是一种由固定长度的特定类型元素组成的序列,元素可以是任何数据类型,但是数组中的元素类型必须全部相同。 数组的长度在创建时就已经确定,且不可更改。 数组的下标从0开始。...声明并初始化一个数组 var arr [5]int // 定义一个长度为 5 的 int 类型数组 arr[0] = 1 // 给数组中的第一个元素赋值为 1 fmt.Println(arr) // [...切片的切片操作s[i:j],其中i表示切片的起始位置,j表示切片的结束位置(不包含j位置的元素),可以得到一个新的切片。 切片可以使用append()函数向末尾添加元素,当容量不足时会自动进行扩容。...// 将 slice2 中的元素打散后添加到 slice1 中 fmt.Println(slice1) // [1 2 3 4 5 6 7 8 9] 切片的遍历和切片表达式 // 遍历切片 slice...arr[3:] // slice3 的值为 [4 5],包含 arr[3] 和 arr[4] fmt.Println(slice3) 数组和切片的区别 (1)数组的长度固定,切片的长度是动态的。

    18220

    Python中的引用和切片

    # 引用和切片造成的不同影响 当你创建了一个对象并将其分配给某个变量时,变量只会查阅(Refer)某个对象,并且它也 不会代表对象本身。...也就是说,变量名只是指向你计算机内存中存储了相应对象的那一部 分。这叫作将名称绑定(Binding)给那一个对象。...一般来说,你不需要去关心这个,不过由于这一引用操作困难会产生某些微妙的效果,这是 需要你注意的: '''如果直接引用对象的话,对mylist操作也会影响到原本的shoplist 如果想要不影响原本的,必须引用的是对象的切片...,切片即为副本 ''' print('Simple Assignment') shoplist = ['apple', 'mango', 'carrot', 'banana'] # mylist 只是指向同一对象的另一种名称...by making a full slice') # 通过生成一份完整的切片制作一份列表的副本 mylist = shoplist[:] # 删除第一个项目 del mylist[0] print('

    73720

    Python中list的切片操作

    blog.csdn.net/Quincuntial/article/details/89674803 文章作者:Tyan 博客:noahsnail.com | CSDN | 简书 1. list的切片操作...Python中可以对list使用索引来进行切片操作,其语法(Python3)如下: a[:] # a copy of the whole array a[start:]...:9] # 从索引为0的列表元素开始迭代列表至索引为8的列表元素,不包含索引为9的列表元素 [0, 1, 2, 3, 4, 5, 6, 7, 8] >>> a[3:5] # 从索引为3的列表元素开始迭代列表至索引为...4的列表元素,不包含索引为5的列表元素 [3, 4] >>> a[::1] # 从索引为0的列表元素开始索引列表,每次迭代索引值加1,直至列表结束 [0, 1, 2, 3, 4, 5, 6, 7, 8,...2,直至索引为8的列表元素,不包含索引为9的列表元素 [3, 5, 7] # 当索引值为负数时 >>> a[-1] # 列表的最后一个元素 9 >>> a[-2:] # 从列表的倒数第二个元素直至列表结束

    93220

    矩阵中的路径

    题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。...如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。...例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串”bcced”的路径,但是矩阵中不包含”abcb”路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后...将matrix字符串映射为一个字符矩阵(index = i * cols + j) 2....遍历matrix的每个坐标,与str的首个字符对比,如果相同,用flag做标记,matrix的坐标分别上、下、左、右、移动(判断是否出界或者之前已经走过[flag的坐标为1]),再和str的下一个坐标相比

    1.3K30

    矩阵中的路径

    题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。...如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。...例如 a b c e s f c s a d e e 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子...思路 回溯法: 对于此题,我们需要设置一个判断是否走过的标志数组,长度和矩阵大小相等 我们对于每个结点都进行一次judge判断,且每次判断失败我们应该使标志位恢复原状即回溯 judge里的一些返回false...的判断: 如果要判断的(i,j)不在矩阵里 如果当前位置的字符和字符串中对应位置字符不同 如果当前(i,j)位置已经走过了 否则先设置当前位置走过了,然后判断其向上下左右位置走的时候有没有满足要求的.

    1.1K20

    python中矩阵的转置_Python中的矩阵转置

    大家好,又见面了,我是你们的朋友全栈君。 Python中的矩阵转置 via 需求: 你需要转置一个二维数组,将行列互换....讨论: 你需要确保该数组的行列数都是相同的.比如: arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] 列表递推式提供了一个简便的矩阵转置的方法:...,可以使用zip函数: print map(list, zip(*arr)) 本节提供了关于矩阵转置的两个方法,一个比较清晰简单,另一个比较快速但有些隐晦....Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速....在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为

    3.5K10

    统计学中的区间估计

    推断性统计学中,很重要的一点就是区间估计。 三种估计区间 置信区间 置信区间(confidence intervals)是最常用的区间估计。...95%的置信区间含义如下:从同一个群体中采样100次,目标是群体的平均数。100个不同的样本,有100个不同的置信区间,95个置信区间中含有群体目标参数(该例中即为平均是)。...置信区间只告诉了群体参数的大致范围,不告诉个体参数的分布情况。 预测区间 预测区间,指的是通过一定的模型(比如线性模型)得到某个数据的预测值,并估计预测值的区间。...预测遇见一般比置信区间(对于预测的置信区间,可以把参考对象设置为预测的平均数)更宽。因为置信区间只考虑到了样本中的取样误差,而预测区间还得考虑到预测的不确定性。...忍受区间,一般用在对于置信区间有严格要求,通过改变群体比例参数达到要求的情况。 三个区间的比较 置信区间来源于采样误差。 预测区间来源于采样误差,预测误差。 忍受区间来源于采样误差,群体比例误差。

    3.5K31

    聊聊 Golang 中的切片和数组

    说到数组,我们应该都不陌生吧,因为基本上每种编程语言中有它的身影;而切片呢?也是一种数据结构,python中也有切片的概念。 数组和切片都可以用来存储一组数据。...但是不同的是数组的长度是固定的,而切片则是可变的;切片就类似于一个可变的数组。 其实,在Go语言中数组和切片外表看起来很像,也因此有时候我们很容易搞混淆,下面我就用几个例子对比一下数组和切片的差异。...slice slice,即切片,表示一个拥有相同类型元素的可变长度序列。 slice通常被写为[]T,其中元素的类型都是T;它看上去就像没有长度的数组类型。...实际上新的 slice 中的前面的元素是从原来的slice中拷贝过来的。 好了,今天的这篇文章就写到这里了,怎么样?...看完以后是不是觉得对 Go 中数组和 slice 的认识又多了亿点点,如果觉得文章写得 ok,请给个点赞,以后我会花更多时间陪你在技术的海洋中遨游!

    22720

    机器学习中的矩阵向量求导(五) 矩阵对矩阵的求导

    在矩阵向量求导前4篇文章中,我们主要讨论了标量对向量矩阵的求导,以及向量对向量的求导。...矩阵对矩阵求导的定义     假设我们有一个$p \times q$的矩阵$F$要对$m \times n$的矩阵$X$求导,那么根据我们第一篇求导的定义,矩阵$F$中的$pq$个值要对矩阵$X$中的$...这两种定义虽然没有什么问题,但是很难用于实际的求导,比如类似我们在机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法中很方便使用的微分法求导。     ...矩阵对矩阵求导小结     由于矩阵对矩阵求导的结果包含克罗内克积,因此和之前我们讲到的其他类型的矩阵求导很不同,在机器学习算法优化中中,我们一般不在推导的时候使用矩阵对矩阵的求导,除非只是做定性的分析...如果遇到矩阵对矩阵的求导不好绕过,一般可以使用机器学习中的矩阵向量求导(四) 矩阵向量求导链式法则中第三节最后的几个链式法则公式来避免。

    3.1K30

    在PowerBI的切片器中搜索

    在制作PowerBI报告时,一般来说,我们都会创建一些切片器。为了节省空间,一般情况下尤其是类目比较多的时候,大多采用下拉式的: ?...不过,在选项比较多的时候,当你需要查找某个或者某几个城市的销售额时,你会发现这是一件很难办的事情,比如我们要看一下青岛的销售额时: ?...你可能会来回翻好几遍才会找到,这时候再让你去找济南的销售情况,你恐怕会抓狂。 那,有没有能够在切片器中进行搜索的选项呢? 答案是:有的。 如图: ?...只要在Power BI Desktop的报告中鼠标左键选中切片器,按一下Ctrl+F即可。此时,切片器中会出现搜索框,在搜索框中输入内容点击选择即可: ?...其实如果不按快捷键,也是能够找到这个搜索按钮的,点击切片器-点击三个小点-点击搜索,它就出来了: ? Simple but useful,isn't it?

    12.3K20

    计算矩阵中全1子矩阵的个数

    rows * columns 矩阵 mat ,请你返回有多少个 子矩形 的元素全部都是 1 。...思路如下: 利用i, j 将二维数组的所有节点遍历一遍 利用m, n将以[i][j]为左上顶点的子矩阵遍历一遍 判断i, j, m, n四个变量确定的矩阵是否为全1矩阵 代码实现: int numSubmat...= 0; i < matSize; i++) { for (int j = 0; j < *matColSize; j++) { // 遍历当前节点为左上顶点的所有子矩阵...在最后判断是否全1的循环中, 如果左上的数字是0, 那必然没有全1子矩阵了 再如果向下找的时候, 碰到0, 那下一列的时候也没必要超过这里了, 因为子矩阵至少有一个0了, 如下图: ?...== 0) continue; int thisMaxColSize = *matColSize; // 当前向右最大值 // 遍历当前节点为左上顶点的所有子矩阵

    2.6K10
    领券